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Abstract 
 

 
Quantifying how patterns of behavior relate across multiple levels of measurement 

typically requires long time series for reliable parameter estimation. We describe a novel 

analysis that estimates patterns of variability across multiple scales of analysis suitable 

for time series of short duration. The multiscale coefficient of variation (MSCV) 

measures the distance between local coefficient of variation estimates within particular 

time windows and the overall coefficient of variation across all time samples. We first 

describe the MSCV analysis and provide an example analytical protocol with 

corresponding MATLAB implementation and code. Next, we present a simulation study 

testing the new analysis using time series generated by ARFIMA models that span white 

noise, short-term and long-term correlations. The MSCV analysis was observed to be 

sensitive to specific parameters of ARFIMA models varying in the type of temporal 

structure and time series length. We then apply the MSCV analysis to short time series of 

speech phrases and musical themes to show commonalities in multiscale structure. The 

simulation and application studies provide evidence that the MSCV analysis can 

discriminate between time series varying in multiscale structure and length.  
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Introduction and application of the multiscale coefficient of variation analysis  
 

Temporal variability is ubiquitous across the behavioral and cognitive sciences. 

However, measures of temporal variability tend to focus on particular timescales in data, 

rather than relating variations across timescales.  If they do relate across timescales, such 

as measures of long-range correlations, the methods tend to require very long time series 

(e.g. more than 1000 points). In this paper, we introduce a new analysis – the Multiscale 

Coefficient of Variation (MSCV) – to estimate temporal variability across multiple 

timescales even for short time series.  

In Gaussian statistics, variance of the mean or its square root, standard deviation, 

is the standard measure of variability. Other types of variability include local variability, 

global variability, and serial correlations (Torre & Balasubramaniam, 2011). Local 

variability is the difference between adjacent values in a time series (Low, Grabe, & 

Nolan, 2000; Madison et al., 2009; Torre & Balasubramaniam, 2011). Global variability 

is the dispersion of a probability distribution typically quantified by the coefficient of 

variation (σ/µ)1. Serial correlation reflects how the values in a time series are related as a 

function of their distance from each other in time, and in particular whether nearby values 

tend to be more similar (persistent, positively correlations) or dissimilar (anti-persistent, 

negatively correlations) than chance (Bassingthwaighte, Liebovitch, & West, 1994; 

Newell & Slifkin, 1998). Local variability, global variability, and serial correlations are 

known to be non-independent of one another in certain conditions (Torre, 

Balasubramaniam & Delignières, 2010; Gilden, 2001; Marmelat, Torre, & Delignières, 

2012).  

                                                
1 Note that some authors discuss serial correlations like long-range memory as ‘global variance’. We use 
global variance here as a term to distinguish between coefficient variation and serial correlations.  
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Serial correlations can be found in most natural time series. For example, most 

biological and behavioral systems exhibit long-range correlations (Goldberger et al., 

2002; Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995; Ramos-Fernandez et al., 2004; 

Sims, 2008; West, 2006). In cognitive science, long-range correlations are found in 

memory processes (Maylor et al., 2001; Rhodes & Turvey, 2007), language structures 

(Zipf, 1949), and many other types of cognitive phenomena (see Kello et al., 2010, for 

review). 

Long-range correlations can be expressed as scaling laws, i.e. nonlinear functions 

whereby one variable is relate to another raised to a power, f(x) ~ xα.  The exponent, α, 

can be determined by plotting the variables on logged axes and estimating the slope (α) 

using a regression line. For temporal-based power laws, the variable of interest, f(T), is 

often some type of variability estimate (e.g., root mean squared error, coefficient of 

variability, etc.) measured as a function of timescale T.  The accuracy with which scaling 

laws can be estimated from data depends on the length (Delignières et al., 2006) and 

sample rate (Wijnants, Cox, Hasselman, Bosman, & Van Orden, 2013) of measurement 

series. Delignières et al. found increased biases and variability of spectral exponent 

estimation for time series shorter than 1024 data points. For some types of time series, 

256 data points were acceptable. However, time series shorter than 1024 points are 

typically considered to be too short in length for reliable parameter estimation. This 

restriction is problematic for many behavioral experiments and other measurement 

conditions in which it is prohibitively difficult to collect more than a few dozen repeated 

measurements. 
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The goal of the current paper is to introduce MSCV analysis as a way to measure 

patterns of variability across multiple timescales for time series far shorter than 1024 data 

points. The problem we are working to solve is the estimation of patterns of variability 

across multiple timescales for extremely short time series. The goal is not to estimate 

scaling laws from data, but rather, to estimate how variability changes across a restricted 

range of timescales.  In the following section, we provide an introduction and description 

of the MSCV analysis. Then we present a simulation study testing the new analysis using 

time series generated by ARFIMA models that span white noise, short-term and long-

term correlations. In the simulation study, we systematically varied the length of the time 

series to investigate the sensitivity of the MSCV analysis to signal type and time series 

length. We will then apply the analysis to short time series of speech phrases and musical 

themes to show and compare their multiscale structures.  

 
Multiscale coefficient of variation (MSCV) 

MSCV analysis was developed to measure the degree to which the coefficient of 

variation of measured events spans multiple temporal scales. For a time series of event 

durations (e.g., reaction times, utterance durations, movement distances), the MSCV 

measures the distance between local coefficient of variation estimates within particular 

time windows and the overall coefficient of variation across all time samples. It should be 

reiterated that MSCV values cannot be used to estimate scaling laws. The MSCV analysis 

simply measures the patterns of variability across multiple timescales. Also, coefficient 

of variation is only meaningful as a ratio unit, so the user should be aware of what scale 

of measurement they are using during application.   
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The sizes of time windows T can be set by hand, or similar to scaling law 

analyses, varied as a power of 2 between a minimum of 2 and maximum of L/2-1, where 

L is the number of measurements in the time series. The time series is tiled with non-

overlapping windows of size T, and the coefficient of variation is computed within each 

window. For window size T, coefficients of variation across windows are averaged,  

𝑀𝑆𝐶𝑉 𝑇 = ! !
! !

. 

The MSCV function can be plotted with window sizes T on the x-axis and 

corresponding MSCV values on the y-axis. The MSCV function can be quantified using a 

number of measures, such as the range, sum, and normalized sum of MSCV values, and 

the slope of the function in logarithmic coordinates (see Figure 1).  
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Figure 1. Schematic depiction of MSCV analysis. (top panel) MSCV profile of example 
time series. (bottom panel) Basic graphical description of MSCV analysis. For each bin 
size, coefficient of variation is computed across a sliding, nonoverlapping window and 
averaged. For each bin size, average coefficient of variation is computed (see bottom-
right). MSCVrange = .77, MSCVsum = 6.10, MSCVnorm = .76, MSCVslope = .61. 

 

Computing the range and sum of MSCV values is straightforward, but the 

normalized MSCV, MSCVnorm, requires some explanation. To compute MSCVnorm, the 

MSCV is divided by the global coefficient of variation for the entire time series, and 

normalized relative to the amount of window sizes NT,  
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. 

The MSCVnorm value is not bounded by a specific range of values, but it typically ranges 

between 0 and 1. By normalizing the MSCV by the global coefficient of variation, 

MSCVnorm provides an estimate of the amount of variability across bins that are less than 

the global coefficient of variation. Time series with random structure will have most 

window sizes approximate the global coefficient of variation and will therefore have an 

MSCVnorm estimate approximate 1.0.  Time series that have more multiscale structure – 

variability spanning multiple window sizes – will have an MSCVnorm less than one2.  

The MSCV analysis was recently applied to an investigation of how music affects 

postural sway (Ross, Warlaumont, Abney, Rigoli, Balasubramaniam, 2016). The radial 

sway of center of pressure measurements of postural sway and musical durations 

(intervals of onset and offset of sound; Coath et al., 2007; Coath et al., 2009) were 

subjected to the MSCV analysis. Ross et al. were interested in the multiscale properties of 

postural sway and musical durations for the purposes of assessing how the multiscale 

structure of postural sway couples to the multiscale structure of musical durations. Ross 

et al. observed that MSCVnorm estimates of radial sway and musical durations were more 

similar for nonmusicians relative to musicians, suggesting that nonmusicians couple to 

the multiscale structure of music more so than musicians. Additional results suggested 

that the multiscale coupling occurred more for musical durations corresponding to low 

groove music (Janata et al., 2012).  

 
ARFIMA simulations 

                                                
2	  For	  MATLAB	  scripts	  go	  to	  https://github.com/drewabney/MSCV.git.	  	  

!
!"#$ !!

!!!
!"
!!

!
!

Page 8 of 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

The ARFIMA (Auto-Regressive, Fractionally Integrated, Moving Average) 

modeling method was used to simulate time series with various degrees of short-range 

and long-range serial correlations. ARFIMA models are extensions to the classical 

ARMA (Auto-Regressive, Fractionally Integrated, Moving Average) models. ARMA 

models (p,q) include two components: a pth-order AR process and a qth-order MA 

process. ARFIMA models (p,d,q) include a dth- order fractional differencing (FI) process 

(Granger & Joyeux, 1980). We are using ARFIMA models to test the MSCV analysis 

because ARFIMA modeling has been previously used to estimate and identify long-range 

dependence and fractal exponents in cognitive and behavioral phenomena (Torre, 

Delignières, Lemoine, 2007; Torre, Varlet, & Marmelat, 2013; Wagenmakers, Farrell, & 

Ratcliff, 2004; Farrell, Wagenmakers, & Ratcliff, 2005).  

We created three types of time series of durations that are known to vary in 

statistical structure: persistent long-range correlations (LRC), positive short-range 

correlations (SRC), and random white noise (WN). For each condition, a pool of 50 

series (length=2048) was generated using the ARFIMA modeling method (using the 

fracdiff package in R). All conditions had a mean of 800 and a coefficient of variation of 

~6%. The auto-regressive (AR) parameter for LRC, SRC, and WN conditions were 0, 

0.6, and 0, respectively. The fractional integration (FI) parameter for LRC, SRC, and WN 

conditions were 0.45, 0, 0, respectively. The moving average (MA) parameter was set to 

0 for all conditions. The specific ARFIMA parameters generated three conditions that 

varied in memory decay as quantified by the auto-correction function: LRC series 

exhibited power-law decay over lags suggestive of long-term statistical memory, SRC 

series exhibited an exponential decay over lags suggestive of short-term statistical 
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memory, and the WN series exhibited no positive or negative autocorrelations across 

lags. The ARFIMA parameters chosen for the simulation study were shown to affect 

sensorimotor synchronization performance across auditory stimulus conditions that 

varied in white noise, short-range, and long-range correlation properties (Torre, Varlet, & 

Marmelat, 2013).  

For each time series, we estimated the MSCVnorm, for the entire time series 

(length 2048) and for a random sample of lengths 200, 100, 50, 25, and 10. See Table 1 

and Figure 2 for results. Although the MSCV analysis can compute various estimates 

from the MSCV profile, our aim is to quantify properties of multiscale structure using a 

single-valued estimate. Therefore, in this simulation study, we chose to only use the 

MSCVnorm estimate.  

To test the performance of the MSCVnorm estimate against a common multiscale 

analysis, we also estimated the Hurst exponent using the Anis-Lloyd/Peters corrected 

rescaled range analysis (Hurst-AL) (see Weron, 2002) for the simulated time series. The 

rescaled range analysis was first introduced by Mandelbrot and Wallis (1969) and 

extends Hurst’s (1951) calculation of a self-similarity parameter, H. The R/S analysis 

consists of estimating the range (R) and standard deviation (S) of a subset of a time 

series.  For example, a subset of a time series with a minimum value of 3 and maximum 

value of 9 will have a range of 6. If the standard deviation of the subset was S=2, then the 

rescaled range for this particular subset is R/S=3. If we increase the number (n) of 

observations in the subset, the linear relationship (H) between R/S estimate and n in 

logarithmic coordinates will approximate H=.5 for a random walk (e.g., white noise) and 

will be greater than H=.5 for Fractional Brownian motion. The Hurst-AL was used 
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because it was found to improve estimation performance for small time series. To our 

knowledge, no researcher has used the R/S-AL analysis on extremely small times, e.g., 

n=10.  

The results suggest that the MSCVnorm estimates are sensitive to signal type. The 

first observation from the MSCVnorm estimates is that WN signals approximate a 

MSCVnorm value approximating 1.0. The second observation is that the MSCVnorm 

decreases from 1.0 as a function of increased multiscale structure, from WN to SRC to 

LRC. Hereafter, we use the term multiscale structure to refer to the variation can be 

different or heterogeneous, across timescales. Decreased or low multiscale structure 

means that variation is similar or homogeneous across timescales. Considering the known 

statistical dependencies of the three signal types generated from the ARFIMA models, 

these observations provide two intuitions about the MSCVnorm measure. The two 

intuitions depend on whether the user is interpreting the MSCVnorm measure as an 

absolute or relative measure.  

If considering the MSCVnorm as an absolute measure, the lower and upper bounds 

[0.0,1.0] suggest that increasing MSCVnorm estimates approaching 1.0 correspond to 

signals with more homogeneity of variation across bins. Conversely, estimates decreasing 

from 1.0 suggest more heterogeneity of variation across bins and therefore, a signal that 

is more multiscale.  

If considering the MSCVnorm as a relative measure, the directionality of the 

MSCVnorm estimates between two or more experimental conditions or partitions becomes 

informative. For example, if a user observed that MSCVnorm estimates for Condition A 

were lower relative to MSCVnorm estimates for Condition B, the user could interpret the 
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signals from Condition A to have more heterogeneity across bins and therefore, is 

consider more multiscale, relative to the signals in Condition B.  

Another important observation is that the MSCVnorm estimates were sensitive to 

signal type for all time series lengths. However, the MSCVnorm estimates failed to 

discriminate between LRC and SRC signals for the n=25 simulations. At n=10, the LRC 

and SRC switch orders but both still discriminate between the WN time series. These 

results suggest that the MSCV analysis is sensitive to different types of time series of 

extremely short lengths. For extremely short time series, the MSCV analysis can 

discriminate between time series exhibiting white noise (close to randomness) and time 

series with specific temporal correlations.  

Table 1. Results from the ANOVAs and planned comparison for MSCVnorm and Hurst-AL 
estimates across time series lengths.  
 

Time series length F(2,47) pLRC vs. SRC pLRC vs. WN pSRC vs. WN 
MSCVnorm     

2048 217.92*** <.001 <.001 <.001 
1024  127.00*** <.001 <.001 <.001 
200  117.75*** <.001 <.001 <.001 
100 59.59*** .001 <.001 <.001 
50 57.46*** >.05 <.001 <.001 
25 23.45*** >.05 <.001 <.001 
10 12.02*** .02 .02 <.001 

Hurst-AL     
2048 2895.90*** <.001 <.001 <.001 
1024 1544.00*** <.001 <.001 <.001 
200  428.80*** .001 <.001 <.001 
100 239.30*** >.05 <.001 <.001 
50 107.05*** .01 <.001 <.001 
25 36.33*** .02 <.001 <.001 
10 4.15* .01 >.05 .02 

 
Note. *p≤.05, **p≤.01, ***p≤.001. pLRC vs. SRC, pLRC vs. WN, pSRC vs. WN  columns 

display results from planned comparisons between the three signal types. 
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The Hurst-AL measure performed similarly to the MSCV analysis at longer time 

series (n=2048, n=1024, n=200). However, at n=100, SRC and LRC time series are 

statistically indistinguishable, and at n=50, the SRC and LRC estimates flip. At n=10, the 

Hurst-AL fails to discriminate between the LRC and WN time series estimates.  

Overall, both analyses perform equally well for longer time series. For smaller 

time series, both analyses also display flipped estimates around n=100 (Hurst-AL) and 

n=50 (MSCVnorm). For extremely short time series, the MSCV analysis – despite a 

flipping of the SRC and LRC estimates – are able to discriminate between estimates from 

SRC and LRC time series and estimates from WN time series. The Hurst-AL estimates at 

n=10, showed that WN and LRC estimates were indistinguishable. Considering the 

results from this simulation study, we would advocate users to employ either analysis for 

substantially long time series. However, if users desire to estimate properties of 

multiscale variability for extremely short time series, we advocate utilizing the MSCV 

analysis.  
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Figure 2. Results for Hurst-AL and MSCVnorm estimates as a function of signal type and 
time series length. Error bars represent standard error of the means.  
 

Overall, the results from the ARFIMA simulations suggest that the MSCVnorm 

provides an intuitive estimate about the multiscale properties of a signal. In the next 

section, we report an application of the MSCV analysis. We chose our corpora due to the 

extreme length limitations of the duration series. As previously discussed, a main feature 

of the MSCV analysis is that it can assess the multiscale structure of extremely short 
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time/event series. Hurst-AL estimates provide information about how the normalized 

range of values scale across multiple time scales. MSCVnorm estimates provide 

information about how the coefficient of variation at specific time scales relate to the 

global coefficient of variation. We have demonstrated that for extremely short time 

series, assessing the coefficient of variation normalized at various time scales 

(normalized for global coefficient of variation) is more sensitive than assessing the 

rescale range of values across multiple time scales.  

 

An empirical comparison of multiscale structure in language and music 

We now provide an application of the MSCV to a novel comparison of the 

relationship between speech and music. The study of the relationship between speech and 

music is generally influenced by a common intuition that both are universal among 

human cultures (see Patel, 2010). Studying the commonalities between speech and music 

has lead to rich empirical research programs. Here we focus on the potential common 

patterns of multiscale structure across speech and music.  

For the study of speech and music, one focus has been on prosodic properties like 

melody and rhythm (Hannon, 2009; Huron & Ollen, 2003; Jusczyk & Krumhansl, 1993; 

Lerdahl & Jackendoff, 1983; London, 2011; Patel & Daniele, 2003; Patel, Iversen, & 

Rosenberg, 2006; Ramus, Nespor, & Mehler, 1999). This work was influenced by a 

hypothesized typology of an isochronous rhythmic organization: stress-timed and 

syllable-timed languages (Abercrombie, 1967; Pike, 1945). Stress-timed languages were 

purported to have equal intervals between stresses, and syllable-timed languages were 

purported to have equal intervals between syllable onsets. Although empirical research 
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does not support this ‘isochrony’ hypothesis, researchers have started focusing on 

durational patterns of vocalic and intervocalic intervals.  

To measure durational variability, researchers have utilized the normalized 

pairwise variability index (nPVI), which provides a ‘local’ measure of the variability of 

durational patterns: 

, 

where m is the number of intervals in a time series and dk is the duration of the kth 

interval in the time series. The nPVI is a dimensionless quantity that provides a measure 

of variability of durational differences for pairs of intervals (i.e., bin size of 2) relative to 

the average duration of the pair.  

  Grabe and Low (2002) observed that nPVI measurements of vocalic intervals 

were greater in stress-timed languages such as British English than in syllable-timed 

languages such as French. This finding points to earlier work (see Nespor, 1990) 

suggesting that stress-timed languages are known to exhibit more vowel reduction than 

syllable-timed languages. Ramus et al., (1999) observed more variability in consonantal 

durations for stress-timed languages and proposed that stress-timed languages are 

purported to have more complex syllable structure relative to syllable-timed languages.  

In the vein of musical composition, Patel & Daniele (2003) observed that 

rhythmic patterns in French and British English musical themes had similar rhythmic 

patterns of the composers’ (either French speaking or English speaking) native languages. 

Using the nPVI to measure local contrast variability, Patel and Daniele found that note 

durations of British English composers had greater variability relative to note durations of 

n!"# = 100
! − 1×

!! − !!!!
!! + !!!!

2

!!!

!!!
!

!
!
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French composers, which corresponds to what was observed in linguistic nPVI values of 

speech (Ramus, 2002). Patel and Daniele’s results point to a potential common property 

between speech and music: prosodic patterns via rhythmic durations.  

Another potential commonality is that both speech and music are organized across 

various levels of hierarchical order (Lerdahl & Jackendoff, 1983). In music, meter is the 

expected pattern of durations, usually denoted by a time signature. Meter is a recurring 

pattern of durations and displays structure (metric structure) across levels of variation 

(London, 2000). Using Patel and Daniele’s corpus of musical themes, London and Jones 

(2011) found differences across levels of rhythmic and metrical structure. Recent work in 

the study of conversational speech has shown that clustering of speech onsets are 

organized across time scales purported to align with levels of linguistic representation 

(Abney, Paxton, Dale, & Kello, 2014; Abney, Kello, & Warlaumont, 2015; see also, 

Luque, Luque, & Lacasa, 2015). In an extension of Patel and colleagues (Patel & 

Daniele, 2003; Patel, Iversen, & Rosenberg, 2006), we test whether similarities between 

the multiscale variability of speech and music can be observed across languages that vary 

on the stress-timed vs. syllable-timed spectrum.  

In line with work suggesting that stress-timed languages exhibit more diverse and 

complex syllable structure (Nespor, 1990; Ramus et al. 1999), we predict that music 

composed and language produced by native speakers of a stress-timed language (e.g., 

English) will display more multiscale structure relative to native speakers of syllable-

timed languages, e.g., French. To test this prediction, we constructed musical and speech 

corpora and submitted the musical and speech durations to the MSCV analysis to 

estimate MSCVnorm values. We expect to observe lower MSCVnorm for music and speech 
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produced by native speakers of a stress-timed language, which would indicate more 

multiscale structure. Ramus et al. (1999) observed more consonantal variability for 

stress-timed language. Therefore, we predict that, controlling for local contrast variability 

(nPVI), MSCVnorm estimates will be lower for stress-timed languages relative to syllable-

timed ones.  

 

Musical corpus 

Our source of musical material was a subset of the corpus used in Patel and 

Daniele (2003). Patel and Daniele focused on collecting musical themes written by 

native-speaking British English and native-speaking French speaking composers who 

were born in the 1800s and died in the 1900s. The chosen musical themes consisted of at 

least 12 notes (e.g., eighth, quarter, etc.) with no internal pauses or rests (cf. Patel & 

Daniele, 2003). Therefore, for each musical theme, we had a time series of note 

durations. To control for metrical type, in the current analyses we only included musical 

themes in duple time3. Themes with duple time have a binary meter where the meter 

divides into beats into two subdivisions, e.g., 2/2, 2/4, 6/8. We also excluded musical 

themes with isochronous durational patterns. A total of 59 English musical themes and 79 

French musical themes were included in the current study (see Table 2). For our corpus, 

the mean duration amount was 20 durations and the minimum duration amount was 12 

durations.  

To investigate differences in durational variability across musical themes, we 

estimated CV, nPVI, and MSCVnorm for each musical theme. Because we are interested in 

                                                
3 In earlier analyses including musical themes exhibiting triple time and other complex metrical structures, 
we found that the results were neither straightforward nor reliable. Future work with larger corpora should 
attend to the issues of multiple metrical types. 
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how the estimates of the MSCV explain variance above and beyond local measures of 

durational contrast (e.g., nPVI), we also include analyses where nPVI was residualized 

out of the MSCVnorm variable.  

The nPVI measures the average degree of durational contrast (or variability) 

between two successive durations in a time series of discretized events. nPVI can be 

considered a measure of local variability. The nPVI is a single valued estimate that is 

computed by (1) estimating absolute difference between two successive intervals 

durations, (2) normalize by the mean duration of the pair, and (3) multiplied by 100. 

nPVI estimates closer to 100 are interpreted as having larger durational contrasts relative 

to lower nPVI estimates. The nPVI has been used in studies of speech and music rhythm 

(Grabe & Low, 2002; Low, Grabe, & Nolan, 2000; Patel & Daniele, 2003; Ramus, 2002; 

Ross, Warlaumont, Abney, Rigoli, & Balasubramaniam, 2016).  
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Table 2. Composers examined in this study. 

Composers # Themes 
English   
Bax 6 
Delius 10 
Elgar 8 
Holst 7 
Ireland 4 
Vaughan Williams 24 
 
French 

 

Debussy 13 
Fauré 6 
Honegger 7 
Ibert 6 
Milhaud 6 
Poulenc 5 
Ravel 7 
Roussel 7 
Saint-Saëns 22 

 

 English music and French music did not differ in estimates of CV (β=-.05, 

t[136]=-.30, p=.77) or nPVI values, β=.-21, t(136)=-1.20, p=.23. However, English music 

did have lower values of MSCVnorm relative to French music, β=.61, t(136)=3.29, p=.002. 

It is important to note that our nPVI results slightly diverge from Patel and Daniele 

(2003): although we found English music to have higher nPVI estimates relative to 

French music, this difference was not statistically reliable. One possible explanation for 

this difference is that we only included musical themes with duple meter, reducing the 

size of the corpus by almost 25%.  

 To assess if MSCVnorm captured variance not explained by local variability, we 

residualized out nPVI from MSCVnorm. After controlling for nPVI, the original pattern of 
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results held, suggesting that English music had lower MSCVnorm estimates relative to 

French music, β=.59, t(136)=3.56, p<.001 (See Figure 3). 

 We also submitted the Hurst-AL to the musical corpus. The Hurst-AL analysis 

yielded estimates for less than 5% of the musical corpus. Given the low percentage of 

Hurst-AL estimates, we did not proceed to test for differences across the musical corpus. 

Inspecting the event series in the musical corpus that did and did not yield Hurst-AL 

estimates provided more insight into the differences between the Hurst-AL analysis and 

the MSCV analysis. The Hurst-AL analysis could not converge on event series with 

multiple consecutive identical event durations (e.g., Bax, b508: .5, .5, .5, .5, 1.0, 1.5, .5, 

.5, .5, .5, 1.0, 1.0…). Because the Hurst-AL estimate relies on a rescaling of ranges for 

particular window sizes, at small window sizes, the range will be 0. The MSCV analysis 

relies on coefficient of variation, not a metric of range, and is therefore more flexible for 

a diverse array of event series types.    

 A lower MSCVnorm estimate suggests that rhythmic durations span more bins of 

the MSCV profile, which is suggestive of an event series that is more multiscale. Our 

results suggested that, even when controlling for local variability (nPVI), English music 

has stronger multiscale properties relative to French music. In other words, there appears 

to be more heterogeneity of variance across timescales for English music relative to 

French music.  
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Figure 3. Results of the residual analyses for the musical theme durations (left) and 
language durations (right). Error bars represent standard error of the means. 
 
 
 
Linguistic corpus 

The main hypothesis for this application study is that music and spoken language 

have similar multiscale structure as a function of the composer’s native language and the 

native language of speakers. We can also test whether or not specific units of language – 

such as vowel durations and consonant durations – display different multiscale structure. 

Our source of linguistic material was a subset of the BonnTempo Corpus (BTC 1.0; 

Dellwo et al., 2004). The BTC was originally constructed for the study of rhythmic 

variability of read speech across languages representing ‘stress-timed’ (e.g., English and 

German) and ‘syllable-timed’ (e.g., French and Italian) rhythmic classes. The text is a 

passage from a novel ‘Selbs Betrug’ by Bernhard Schlink.  

In the BonnTempo Corpus, speakers were instructed to first read the passage in 

their ‘normal reading’ rate. After the first reading, speakers were instructed to read the 
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passage again at different speech tempi. We only included read speech from native 

English and French speakers reading the passage at a ‘normal reading’ rate. The 

BonnTempo Corpus consists of Praat™ textgrid files (Nijmegen, NL) with human-coded 

labeling of syllables, consonantal intervals, and vowel intervals. We created custom 

Praat™ scripts to extract consonantal and vowel intervals from textgrid files. Our 

linguistic corpus consisted of 49 read phrases in English and 42 read phrases in French. 

For our corpus, mean duration amount was 27 durations with a minimum duration 

amount of 13 durations. For each read speech phrase, we created event series, akin to the 

rhythmic durations in the musical themes for consonantal durations and vowel durations. 

To investigate differences in durational variability across read speech, we estimated CV, 

nPVI, and MSCVnorm for each phrase and duration type. Similar to the analysis of musical 

themes, we also included an analysis where nPVI was residualized out of the MSCVnorm 

variable. 

CV estimates were higher for English speakers (M=.51, SE=.01), relative to 

French speakers (M=.44, SE=.02), β=-.72, t(178)=-3.53, p<.001. CV estimates did not 

vary across consonantal durations (M=.46, SE=.01) and vowel durations (M=.50, 

SE=.02), β=.02, t(178)=.14, p=.86. We observed a Language X Duration Type 

interaction, β=.59, t(178)=2.06, p=.04, suggesting that CV estimates for French 

consonant durations (M=.41, SE=.02) were lower than English consonant durations 

(M=.51, SE=.02), t=-3.53, p=.003, but estimates for French (M=.49, SE=.02) and English 

vowel durations (M=.51, SE=.02) were not reliably different, t=-.63, p=.92. 

nPVI estimates were higher for English speakers (M=57.06, SE=1.51), relative to 

French speakers (M=50.82, SE=1.45), β=-.73, t(178)=-3.61, p<.001. nPVI estimates were 
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higher for consonant durations (M=55.44, SE=1.54) relative to vowel durations 

(M=52.91, SE=1.50), β=-.45, t(178)=-2.32, p=.02. We observed a Language X Duration 

Type interaction, β=.29, t(178)=2.11, p=.03, suggesting that nPVI estimates for French 

consonant durations (M=49.70, SE=2.10) were lower than English consonant durations 

(M=60.37, SE=1.99), t=-3.61, p=.002, but estimates for French (M=51.93, SE=2.02) and 

English vowel durations (M=53.76, SE=2.18) were not reliably different, t=-.62, p=.92. 

MSCVnorm estimates for English speakers (M=.92, SE=.01) and French speakers 

(M=.93, SE=.01) were not reliably different, β=.31, t(178)=1.60, p=.10. MSCVnorm 

estimates were higher for consonant durations (M=.97, SE=.01) relative to vowel 

durations (M=.88, SE=.01), β=-.65, t(178)=-3.54, p<.001. We did not observe a Language 

X Duration Type interaction, β=-.40, t(178)=-1.47, p=.14. 

Finally, to control for local variability estimated by the nPVI, we residualized out 

the variance explained by the nPVI estimates and constructed a new model for the 

MSCVnorm estimates. Residual MSCVnorm estimates for English speakers (M=-.009, 

SE=.01) were reliably smaller relative to French speakers (M=.01, SE=.02), β=.43, 

t(178)=2.26, p=.02. Residual MSCVnorm estimates for vowel durations (M=-.04, SE=.01) 

were reliably smaller relative to consonant durations (M=.04, SE=.01), β=-.59, t(178)=-

3.19, p=.002. We observed a marginal Language X Duration Type interaction, β=.29, 

t(178)=-.50, p=.06. However, planned comparisons suggested that French consonant 

durations (M=.07, SE=.01) were not reliably different than English consonant durations 

(M=.02, SE=.01), t=1.61, p=.38, nor were estimates for French (M=-.05, SE=.02) 

different from English vowel durations (M=-.04, SE=.01), t=-.47, p=.96 (see Figure 3). 
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We also submitted the Hurst-AL analysis to the language corpus. The Hurst-AL 

analysis provided estimates for 97.8% (n=178) of the language corpus, and therefore, we 

tested for differences across language and duration type. Hurst-AL estimates for English 

speakers (M=.45, SE=.07) and French speakers (M=.44, SE=.08) were not reliably 

different, β=-.12, t(174)=-.59, p=.55. Hurst-AL estimates were higher for vowel durations 

(M=.46, SE=.07) relative to consonant durations (M=.43, SE=.08), β=.44, t(174)=2.16, 

p=.03. This result corroborates with the results from the MSCVnorm estimates suggesting 

that vowel durations have more multiscale structure relative to consonant durations. We 

did not observe a Language X Duration Type interaction, β=-.19, t(174)=-.64, p=.52. 

Residual Hurst-AL estimates (controlling for nPVI) did not differ across language, 

duration type, nor the language X duration type interaction, all ps>.10. 

 

Interim discussion of the application results  

The results from the residual MSCVnorm estimates for musical themes suggests 

that the composer’s native language has an influence on the multiscale structure of his or 

her work. Similar to other past studies (Patel & Daniele, 2003; see also London & Jones, 

2011), we applied a quantitative measure of a proposed property of speech and music, 

multiscale variability, to the music of composers from stress-timed (British English) and 

syllable-timed (French) languages. We found that, controlling for local variability (nPVI 

values), English classical music had more multiscale variability, as suggested by 

observing lower MSCVnorm estimates, relative to French classical music. We limited our 

corpus of musical themes to only consist of themes with duple meter. In a re-analysis of 

Patel and Daniele (2003), London and Jones (2011) investigated two levels of linguistic 
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structure and found that only themes in duple time showed the differing patterns of local 

variability across British English and French themes.  

We observed that English-read speech had more multiscale variability, as 

suggested by observing lower MSCVnorm estimates, relative to French-read speech. We 

also observed that vowel durations had more multiscale variability relative to consonant 

durations. Finally, although we observed marginally interaction suggesting that, for 

consonantal durations, English-read speech has more multiscale variability relative to 

French-read speech. However, subsequent analyses suggested that this was only a 

nominal difference. Nevertheless, we can speculate that these results relate to the idea 

that stress-timed languages have more complex syllables (Dauer, 1983). Ramus et al. 

(1999) observed that consonantal durations in for stress-timed languages have more 

variability relative to syllable-timed languages (Ramus et al., 1999). Again, however, 

these interpretations are speculative considering the lack of a reliable effect in subsequent 

statistical tests.  

Across the results of speech and music, one observation is that the patterns of 

MSCVnorm estimates were most similar across the language of the composer (musical 

corpus) and speaker (language corpus), suggesting that at least for one stress-timed 

language, English, there appears to be more multiscale variability. If cultural differences 

do in fact influence the composition of music, perhaps this pattern suggests that the 

complexity of syllable structure influences the degree to which a musical theme is 

composed. This conjecture could be informed by future work with larger and more 

diverse speech and music corpora.   

 
Discussion and conclusion 
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Methods for estimating patterns of variation across scales of measurement 

typically require the user to have substantially large time series. In this paper, we 

introduced a new analysis that affords researchers the ability to estimate patterns of 

variability across temporal scales using time series of limited length.  

In the simulation study, we observed that the MSCV analysis was sensitive to 

different types of time series that varied depending on the temporal structure generated 

from ARFIMA models. From the MSCV profile, the user can choose from a variety of 

estimates that, in various ways, quantify the pattern of variability across temporal scales. 

We observed that the MSCVnorm estimate generally ranges from 0.0 to 1.0. In the 

simulation study, ARFIMA models generating white noise time series produced 

MSCVnorm estimates around 1.0. ARFIMA models generating long-range and short-range 

correlations produced MSCVnorm estimates less than 1.0. Notably, long-range correlations 

are known to display multiscale structure across temporal scales and had the smallest 

MSCVnorm estimates. As previously noted, the MSCV analysis is not meant to assess the 

fractality of a time or event series. Researchers interested in assessing whether or not a 

time series is fractal are encouraged to use previously existing methods (Eke, Hermán, 

Kocsis, & Kozak, 2002; Goldberger et al., 2002; Hausdorff, Peng, Ladin, Wei, & 

Goldberger, 1995; Holden, 2005).  

In the simulation study we also compared the MSCV analysis with common 

multiscale analysis, the rescaled range analysis (Hurst-AL). We found that both the 

MSCV and rescaled range analyses performed equally well for longer time series. 

However, the MSCV outperforms the rescaled range analysis for extremely short time 
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series and for event series with diverse properties, e.g, consecutive identical durations in 

the musical corpus.   

In the application study, we applied the MSCV analysis to a comparison between 

speech and music. Previous research had shown that the rhythmic properties of music and 

speech, as quantified by the nPVI, vary as a function of whether the composer’s native 

language was stress-timed (e.g., English) or syllable-timed, e.g., French (Patel & Daniele, 

2003). In our application study, we investigated whether multiscale properties of speech 

and music, as quantified by the MSCVnorm estimate, differed as a function of stress- and 

syllable-timed languages, too. We observed that MSCVnorm estimates for note durations 

of music and read speech differed across English and French. Specifically, English music 

and speech has lower MSCVnorm estimates relative to French music and speech. These 

results suggest that stress-timed languages have stronger multiscale properties relative 

syllable-timed languages. Conversely, these results suggest that the variability of 

syllable-timed languages do not span as many levels of temporal structure. These results 

provide evidence for a common property linking music and speech: multiscale structure. 

The application study provided a good example of how the MSCV analysis can 

differentiate between time series of short durations. 

In both the simulation study and the application study, we used the default 

binning parameters for each time series, [2,(L/2)-1]. However, the MATLAB scripts can 

be adjusted to define any range of bins as long as the minimum bin is a whole number 

greater than 1. The MSCV analysis can be applied to a wide range of datasets with 

duration- or interval-level data points. Coefficient of variation is a dimensionless number 

because it is independent of the unit of measurement specific to a dataset. The analysis 
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has already been applied to measurements of postural sway (Ross et al. 2016), musical 

durations estimated from an auditory saliency model (Ross et al. in press; see also Coath 

et al., 2007, 2009), and durations from musical themes and spoken language (current 

study).  

The results from the simulation and application studies suggest that the MSCV 

analysis can discriminate between time series that vary in multiscale structure. 

Importantly, the results from the simulation study suggest that even short time series 

(e.g., lengths of 50 or 25 data points), can vary in multiscale structure and can be 

differentiated using the MSCV analysis. It should be noted that for extremely short time 

series (e.g., 25 data points), the MSCV analysis failed to discriminate between time series 

of specific temporal correlations, e.g., LRC vs. SRC. Nevertheless, even for extremely 

short time series, the MSCV analysis, and specifically the MSCVnorm estimate, was 

sensitive to whether a time series had heterogeneous structure (e.g., LRC and SRC) or 

homogeneous structure across timescales, e.g., white noise. Future research should try the 

MSCV analysis on a wide corpus of short and long sequences of behavioral data such as 

speech, human motor performance, and reaction times, and continuous measurements of 

neural data such as spike trains and time-varying EEG signals. 
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Dear Dr. Mike Jones,  
 
Thank you for the opportunity to revise BR-SC-16-011, titled “Introduction and 
application of the multiscale coefficient of variation analysis”. We thank you and all three 
reviewers for the thoughtful comments on the revised manuscript. We believe that these 
revisions have both improved and clarified the manuscript. We hope that the revised 
manuscript is suitable for publication in Behavior Research Methods.  
 
The most major change is adding an additional analysis to the simulation study. This was 
requested by Reviewer 1 in order to compare our new method with existing multiscale 
analyses. We believe this additional analysis provides unique insights into the positives 
and negatives of our method and existing methods. Overall, both analyses perform 
equally well for long time series. However, the two analyses diverge at shorter and 
shorter time series lengths in interesting ways. We highlight these differences within the 
revision.  
 
We believe that the current manuscript is much more clear and direct and importantly, 
accessible to the Behavior Research Methods readership.  
 
We now provide a detailed summary of each reviewer’s comments and our subsequent 
actions.  
 
Revisions based on comments of the Reviewer 1:  
 
R1, Comment 1: 
Broadly, I'd like to see a clearer statement of what problem the authors are trying to solve 
with MSCV, and why MSCV solves it better than canonical approaches to multi-scale 
structure (e.g. DFA, multi scale entropy, wavelet methods). If the problem is just that 
these analyses don't work on small samples, then a much more thorough statistical 
treatment is needed to show that MSCV avoids their pitfalls (see below). If the problem is 
that these analyses don't capture the aspects of multi-scale structure that the authors are 
interested in, then the relevant aspects need to be stated precisely and a more direct 
comparison of the different techniques is needed.  
 
If it's the former, then the provided ARFIMA simulations are not sufficient support the 
claim: the authors only used three condition with hand-picked parameters. Presumably, 
there's some relationship between the size of the effect and the sample size required to 
detect it. The AR parameter in the SRC condition was set to 0.6, which is a fairly strong 
time dependence — it's not surprising that it was distinguishable with a relatively small 
sample size. But how big a sample size would you need if the dependence is weaker? 
Similarly, the FI parameter is near the upper boundary of what can be set without the 
process becoming non-stationary. It would be more compelling to show a full parameter 
sweep and calculate statistical power at different combinations of sample size & effect 
size.  
 
We have now provided a comparison analysis of the simulations using a type of rescaled 
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range analysis, the R/S-AL, which has been known to provide better estimation 
performance for short time series. Although the R/S-AL (and the Hurst-AL parameter 
estimate) has been used for time series as short as n=256 (see Weron, 2002), to our 
knowledge, we are not aware of any other work using the R/S-AL on time series of 
extremely short lengths, e.g., n=25 or n=10. We also added an additional time series 
length to the simulation, n=10, to test the lower limits of what is considered an extremely 
short time series. Overall, we find both estimate techniques perform equally well for 
longer time series. However, both techniques start breaking down at shorter time series 
(n=100 for Hurst-AL and n=50 for MSCVnorm). Crucially, we find that for extremely 
short time series, the MSCVnorm is able to distinguish between WN time series and 
LRC/SRC time series, whereas the Hurst-AL is able to distinguish between WN time 
series and SRC time series, but not between WN and LRC time series. We conclude that 
both techniques have limitations, but for extremely short time series, the MSCV analysis 
outperforms the R/S-AL analysis.  
 
We also submitted the Hurst-AL to the music and language corpus within the application 
study section of the revision. Notably, for the musical theme corpus, the Hurst-AL only 
provided estimates for less than 5% of the themes. Upon further inspection of the corpus, 
we found that the Hurst-AL has difficulty providing parameter estimates for event 
durations with consecutive identical durations (e.g., .5, .5, .5, .5, 1, 1, 1, 1, .25, .25, …). 
This difficulty is likely due to the Hurst-AL relying on standardized range values in its 
computation. We find this to be an interesting property that further distinguishes between 
the MSCV analysis and the Hurst-AL estimates.   
 
Also, we have now made it more explicit that we implemented previously-used ARFIMA 
parameters from a study distinguishing performance of sensorimotor synchronization 
performance across various conditions that varied in random, short-range, and long-
range properties (Torre, Varlet, & Marmelat, 2013). Our choice to use the ARFIMA 
properties from Torre et al. was to use properties in our simulations that are known to 
impact human performance. Torre et al., found that auditory sensorimotor 
synchronization differed as a function of the ARFIMA properties. This was not made 
explicit in the previous manuscript, and so we understand if this free parameter in our 
simulations was considered ill-defined.  
 
R1, Comment 2: 
 
Since you're estimating MCSV_norm from (possibly small) empirical time series, another 
statistical problem is deriving a sampling distribution to use for hypothesis testing. This 
seems a bit tricky, since the estimated MSCV for a particular window size is the mean of 
a sequence of noisy CV estimates, and the MSCV_norm further averages across window 
sizes. Analytic proofs are clearly outside the scope of the paper, but you could at least 
show the results of a simulation where you sample time series of a certain length with a 
known underlying MSCV_norm and show that your estimation procedure is unbiased and 
that the error scales with sample size in a reasonable way. This would also help make the 
point about MSCV working for small sample sizes (DFA, for example, is known to be 
biased for finite sample sizes; Bryce & Sprague, 2012). 
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This is an important comment and we think our new simulations provide insights into the 
biases R1 is mentioning. First, it is important to state that there are biases for both 
analytic techniques that vary in degree and function for different time series lengths. We 
make these biases explicit in the revision and find these biases to be important for 
readers interested in this topic of research. Overall, these results show how impactful 
time series length is for estimation. However, because we are interested in 
communicating the potential value of this new method, it is important to point out again 
that the MSCV analysis outperforms the R/S-AL analysis at extremely short time series, 
as long is performance is considered as the successful discrimination of SRC and LRC 
time series with WN time series.  
  
 
R1, Comment 3: 
 
1. It's worth noting that the coefficient of variation is only meaningful for measurements 
on ratio scales. All the suggested applications use event durations, which have a fixed 
zero point, but it’s an important disclaimer for the reader nonetheless. 
 
We have now added this disclaimer. 
 
R1, Comment 3: 
 
2. Captions for Figure 2 and Figure 3 should explain how error bars were calculated (e.g. 
bootstrapped 95% confidence intervals? SE of mean?) 
 
We have now added more information about the error bars for Figs. 2 and 3.  
 
R1, Comment 4: 
 
3. In the final section, you refer to nPVI several times before defining or explaining it. 
 
We have now provided additional information about the nPVI.  
 
R1, Comment 5: 
 
4. At several points in the "Linguistic Corpus" section, you run two separate t-tests and 
use the difference in significance to claim a difference in the conditions. However, a 
difference in significance doesn't imply a significant difference: you have to test the 
interaction (Nieuwenhuis, Forstmann, & Wagenmakers, 2011). 
 
We thank R1 for this comment. We have now updated our entire results section and 
included more comprehensive regression models. In doing so, we did not find a reliable 
interaction between Language and Duration Type (p=.06) as per subsequent post-hoc 
tests. Although we did not find a reliable interaction, we did find other interesting results, 
which we discuss in the Results and Discussion sections.  
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R1, Comment 6: 
 
5. Are there different multi-scale variance structures that would end up having the same 
MSCV_norm value? It seems like collapsing everything down to a scalar value could be 
"too lossy" in the sense of making meaningful differences look the same at the level of 
the DV. 
 
We think that the simulation results suggest that the MSCV analysis and the Hurst-AL 
estimates are both sensitive to various properties such as the length of the time series. 
Therefore, it is possible that different types of structure (e.g., LRC, SRC) will have 
similar estimates. However, this is not a new insight and has been documented in various 
outlets regarding multiscale and fractal methods. 
 
This is an issue that pervades work in multiscale and fractal estimation and is considered 
an open research/methodological question. We believe that it is important for the user of 
any of these methods (including the MSCV) to consider the range of time series lengths 
used in their sample and work to constrain this range in experimental design and, if 
necessary, in post-hoc decisions about sample inclusion. These thoughts have now been 
added into the manuscript as a disclaimer.  
 
 
Revisions based on comments of the Reviewer 2:  
 
Reviewer: 2 
 
Comments to the Author 
The authors’ introduce a statistic, the multiscale coefficient of variation (MSCV), that is 
capable of distinguishing between data with different temporal structure. The authors 
describe MSCV clearly enough that I would feel comfortable in correctly implementing 
the algorithm from the details supplied in the submitted manuscript. 
 
The authors demonstrate the statistic’s sensitivity by first showing it can distinguish 
between simulated data with known temporal properties. The authors then demonstrate 
the practical value of this statistic to behavioral research by demonstrating it can be used 
to identify commonalities and differences in linguistic and musical data that depend on 
the native language of the speaker or composer. Specifically, the authors find evidence of 
more multiscale structure in music and speech when it is produced by native speakers of 
stress-timed (rather than syllable-timed) languages. This was revealed through an 
analysis of note durations for music and consonantal durations for language. 
 
The main reason why behavioral researchers might want to the MSCV in analysis is that 
it has sensitivity even with with very short time series. This is not true of other tools that 
quantify scaling properties of temporal data. Describing MSCV and demonstrating it has 
sensitivity that can distinguish time series with different temporal properties is a useful 
contribution for behavioural scientists working with time series data. 
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R2, Comment 1: 
 
The theoretical introduction to MSCV and analysis of simulation data were very clear. 
However, I became confused when the authors began talking about musical themes. My 
best understanding is that the authors calculated MSCV using note durations of a variety 
of compositions in duple time. It was unclear to me how one measures note duration. Do 
you have to get someone to play a piece? Can it be measured from a musical score? It 
was likewise unclear to me what duple time is and why it would be a good type of music 
to use for analysis here. I believe more explicit description would help musically unaware 
readers conceptualize what the authors are actually studying in this section of the paper. 
 
We have now added information about the musical themes included in the sample, 
including information about duple meter.  
 
R2, Comment 2: 
 
I found the authors’ description of their analysis of linguistic data confusing. At first, I 
got the impression that the authors had participants read passages that were extracted 
from the BonnTempo Corpus. After re-reading the section a few times, I now understand 
that the BonnTempo Corpus actually contains data of read passages. This section could 
be made more clear. Specifically, my source of confusion existed at the transition from 
paragraph 1 to paragraph 2 on page 17. 
 
We have now provided additional information and detail about the BonnTempo Corpus.  
 
R2, Comment 3: 
 
Page 18 line 8. “French speaker” should be “French speakers”. 
 
Thank for you for pointing this out. We have corrected it accordingly.  
 
Revisions based on comments of the Reviewer 3:  
Reviewer: 3 
 
Comments to the Author 
In this study, the authors present a new analytical method, MSCV, for assessing temporal 
variability across multiple timescales, with the particular advantage in that it can be used 
on short timescales. Other approaches, which estimate scaling laws, are problematic in 
that accuracy is penalized with shorter series. The authors showcase MSCV across two 
sections: the first is in generating time series (using ARFMA) with known statistical 
structures (exhibiting long-range correlations, short-term correlations, and white noise) 
and determining whether MSCV can distinguish each as the lengths of time series are 
manipulated, and the second section is to apply MSCV to determine 
differences/similarities in language and speech rhythms across short time series signals.    
 

Page 42 of 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

R3, Comment 1: 
 
My general impression is that this paper is very good, but could be improved upon by 
developing and better connecting each of the two sections described above. In particular, 
the last section on language/speech rhythms did not seem well integrated with the 
overarching goal (stated on page 3; demonstrating temporal structural variability across a 
range of short and long time series). It felt like an entirely new paper in many ways, with 
its own set of theoretical questions, debates, and points of emphasis. Although I enjoyed 
reading about the relationships between music and speech and why the music of speakers 
of stress-timed or syllable-timed languages might exhibit similar structural properties, I 
was expecting more on what MSCV might specifically bring to the table. Why is MSCV 
necessary for these types of data? How would other measures based on scaling law 
estimates fail to capture the temporal variability?  
 
We thank R3 for this question. In response to R1’s comment 1, we have now added a new 
measure in the simulation study, the Hurst-AL, which is a standard measure used in 
fractal estimation. Our new simulation results suggest that both analyses – our MSCV 
and the existing Hurst-AL – do a good job for long time series, but both analyses perform 
differently for time series decreasing in length.  
 
R3, Comment 2: 
 
One of the strengths of the MSCV is that it is a straightforward measure. I felt like the 
mechanisms of implementation were well explained. But I was not so clear on the 
motivating rationale for why each term in the MSCVnorm equation was included, and 
why it was expected to capture multiscale properties. For example, why normalize over 
the global coefficient of variation? Is this what is picking up on potential differences at 
longer timescales? So- just a bit more on these issues would be appreciated. 
 
We have now provided additional information and detail regarding the specific 
properties of the MSCVnorm estimate.  
 
R3, Comment 3: 
 
Another issue I'm mostly just curious about is the sensitivity of MSCVnorm. For 
example, what if you generated a sequence of ARFMA signals that had a finer gradation 
in their transitions from WN, SRC and LRC values? Would the correlation with 
MSCVnorm be near 1? You don’t have to report this. I’m just curious.  
 
This is a good question. We used ARFIMA models and exact parameters from a recent 
study (Torre, Varlet, & Marmelat, 2013) to generate our time series for the simulation 
study. From the simulation study, we know that the White Noise condition has a p(AR) of 
0 and a d(FI) of 0. The SRC has a p(AR) of .6 and a d(FI) of 0 and the LRC has a p(AR) 
of 0 and a d(FI) of .45. For a time series with random structure, an MSCVnorm will 
approximate 1.0; even short time series (e.g, n=25). Although we do not know exact 
estimates from more finer gradations of these transitions, due to the current findings, we 
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expect that the MSCVnorm estimates will vary as a function of the multiple parameters of 
the an ARFIMA model. Of course, we could explore the entire parameter space of the 
ARFIMA model, which would be an interesting future project.  
 
R3, Comment 4: 
 
Also, related to the previous point, is it a fair characterization to say that MSCV is good 
for just showing relative differences between two signals - that one signal generally has 
more heterogeneity in variance than another - but if you wanted to know precisely by 
how much, you would be better off using something that estimates fractal exponents 
(assuming long enough time series)?  
 
We believe R3’s intuitions are correct regarding the end-user applications. Also, we have 
now made it clear in the revision that the MSCV analysis is not for estimating fractal 
exponents nor is it a power law analysis.  
 
R3, Comment 5: 
 
The issue with nPVI is a bit confusing. The term is introduced on page 12 without really 
being defined (it's not until page 15 that a clear definition is given). You also state that 
nPVI was residualized out of the MSCVnorm variable. But I'm still not entirely clear 
about the rationale for doing so. On page 14, it’s also noted that greater consonational 
variability necessitates controlling for local contrast variability. But again, why? 
 
We have now provided additional information about the nPVI in the revised manuscript.  
 
R3, Comment 6: 
 
Also, is there something odd going on with the results as shown in Figure 2, the top-left 
figure? Is it the case that MSCVnorm cannot discriminate between SRC and WN for long 
time series? Isn't it supposed to? 
 
The estimates for the SRC and WN time series (n=2048) are actually statistically 
different. We wanted to keep the y-axis consistent across the various facet plots, so the 
difference is qualitatively less distinct.  
 
R3, Comment 7: 
 
In the music/speech section, there really was no explicit mention of the lengths of the 
music and speech time series, other than that the corpora were selected because of 
extreme length limitations. How extreme are we talking about?  
 
We have now added this information into the revision. The minimum duration amounts 
were 12 and 13 for the music and language corpora, accordingly. The average duration 
amounts were 20 and 27 durations for the music and language corpora, accordingly.  
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R3, Comment 8: 
 
OTHER ISSUES:  
 
MSCV is also a rather straightforward measure to implement and given it is being 
showcased in BRM I was expecting some sort of accompanying tool or software. At the 
very least, it may be worth making the Matlab code available on Github. Also, this 
manuscript suggests that MSCV has already been introduced elsewhere (e.g., Ross et al., 
in press). How novel is the presentation here in BRM - of the method itself - not in how 
you applied it?  
 
We have provided the Matlab code on the 1st author’s Github account. The link is 
provided in a footnote in the manuscript. The MSCV analysis was created and used for 
the Ross et al. project. Once we completed that project, we decided this analysis should 
be made accessible to the public and figured the most responsible/accessible route was 
through a methodological publication (and code provided on Github). The results in the 
applications section (music and language corpora) of the current manuscript are 
completely novel.  
 
R3, Comment 9: 
 
I also think that I’m missing something obvious in understanding the interpretation in the 
interim discussion. It has to do with the sentences on page 19 (of 28), from about lines 20 
to 30. So, for consonational durations, you observe greater multiscale variability. But 
then you go on to say that this result may be because stress-timed languages have more 
complex syllables. But shouldn't it be because they have something more complex going 
on with consonants?   
 
Yes, this was influenced by some of Ramus’ previous work. We have now provided more 
detailed results and interpretations in the revised manuscript.  
 
R3, Comment 10: 
 
Minor issue, on page 7 (bottom), the full name for the ARMA acronym shouldn't have 
the "Fractionally-Integrated" bit. 
 
In the simulation study, we actually did use ARFIMA models to generate the time series. 
We used specific parameters from a recent study (Torre, Varlet, & Marmelat, 2013). We 
have now added more detail to mitigate any confusion regarding this issue.  
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