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Abstract—Neuromorphic systems are a particular class of AI 

efforts directed at creating biologically analogous systems 

functioning in a natural environment. The development, testing, 

and training of neuromorphic systems are difficult given the 

complexity and implementation issues of real physical worlds. 

Certainly, creating physical environments that allow for 

incremental development of these systems would be time-

consuming and expensive. The best solution was to employ a 

high-fidelity virtual world that can vary in task complexity and 

be quickly reconfigured. For this we chose to use USARSim---

an open source high-fidelity robot simulator with a high degree 

of modularity and ease-of-use. We were able to accelerate our 

testing and demonstration efforts by extending the functionality 

of USARSim for testing neuromorphic systems. Future 

directions for extensions and requirements are discussed. 

I. INTRODUCTION 

Artificial intelligence (AI) has always been a vastly broad 

and multidisciplinary field including everything from 

decision making agents in economic models to pattern 

recognition systems, to learning models, to natural language 

processing algorithms to name a few (see [1]). While some 

approaches are biologically inspired, many treat the system 

like a black-box such that only the observable behavior need 

show intelligent or human-like qualities. In contrast, 

neuromorphic systems are a particular class of AI systems 

aimed not at just biologically inspired models, but 

biologically and psychologically analogous systems.  

Neuromorphic systems can model many levels including 
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intra-cellular processes, neuron growth and learning, as well 

as whole brain systems and connections among them. 

However, due to the complexity of many nervous systems 

(i.e., mammalian brains), neuromorphic systems work 

usually involves an attempt to model only a part or 

subsystem of an entire nervous system. 

Neuromorphic systems research in the software domain 

has focused on creating simulations of biological systems at 

all scales. A strong push in this direction was seen in the 

explosion of research on neural networks and parallel 

distributed processing in the 1980s [2]. Much of this work 

was inspired by theoretical considerations of neural 

organization going back to the 1950s. Such is the case with 

the Perceptron [3] (a simple feed-forward network of 

simulated neurons) and Hebbian learning theory [4]. A 

digital simulation of a ―large‖ 512 neuron neural network 

was also conducted in IBM Research at this time [5].  

In contrast the software simulation, neuromorphic systems 

research in the hardware domain involves building actual 

circuits that represent a brain or brain subsystem.  A growing 

interest group has been in existence from the 1980s and the 

bulk to research focuses on intelligent robotics, low-level 

perception and motor control.  

Neuromorphic technology that replaces programmable 

systems with learning or adaptive systems would be a 

significant step forward. If we subscribe to Turing’s idea that 

intelligent systems merely need to demonstrate intelligent 

behavior, then programmable systems will be sufficient. 
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Fig. 1. Synapse 3D Virtual Environment. 



  

However, there is a growing consensus that intelligence 

involves more than just the demonstration of intelligent 

behavior through specific task performance. Rather 

intelligence requires that good outcomes in task performance 

are accompanied by additional characteristics such as 

flexibility, efficiency, generalizability, and creativity. In 

other words, intelligence is not necessarily just solving a 

problem, but also the manner in which the problem is solved. 

Thus neuromorphic systems solve problems in a desirable 

manner which produces a host of useful qualities: 

 

- managing complex, real-world, dynamic 

environments 

- efficient energy use in terms of power  

- efficient information processing 

- robustness to damage 

- self-organizing and scalable systems 

- creative and adaptive use of the environment 

 

The development of neuromorphic systems is without 

question challenging and complex. Even the simplest 

mammalian nervous systems have tens of millions of neurons 

and thousands of interconnected brain structures.  To build 

such a system would require an unprecedented multi-

disciplinary team that can work in areas such as 

computational neuroscience, artificial neural networks, large-

scale computation, neuromorphic VLSI, information science, 

cognitive science, materials science, unconventional 

nanometer-scale electronics, and CMOS design and 

fabrication.   

II. BUILDING A NEUROMORPHIC SYSTEM 

The Cognitive Computing via Synaptronics and 

Supercomputing (C2S2) project is a large multi-organization 

and multi disciplinary effort aimed at creating both the 

hardware and software components of a neuromorphic 

system on the scale of a small mammal (i.e., rat). The goal is 

to create hardware components that behave like biological 

synapses so the term synaptronics is used to refer to the 

hardware. These collaborating organizations include at IBM 

Almaden Research Center, Stanford University, Cornell, 

Columbia University, The University of Wisconsin-Madison, 

and The University of California-Merced.  Each organization 

may have multiple teams.  This effort is in response to a 

DARPA BAA (i.e., DARPA-BAA 08-28) called Systems of 

Neuromorphic Adaptive Plastic Scalable Electronics 

(Synapse) requesting proposals for the development of a 

neuromorphic system. 

There are four main areas if the project and these various 

teams may work in one or more of these areas.  They 

include: 

 

 Hardware: The hardware teams are responsible for 

building the circuitry for the synaptronic brain from the 

materials all the way to the full-scale system. They are 

responsible for creating components that mimic 

biological synapses showing spike-based information 

encoding and spike time dependent plasticity (STDP).   

 Architecture: The architecture teams will evaluate and 

compile the literature on brain anatomy, physiology, and 

function.  They are responsible for designing the 

architecture of the synaptronic brain such that it 

approximates the connectivity, modularity, hierarchical 

organization, self-organization, reinforcement, and 

inhibition systems of a biological brain.  Processing will 

should also be distributed, inherently noise-tolerant, and 

robust to damage.  

 Simulations : The simulations teams are responsible for 

creating software to test and explore subsystems to 

ensure they perform as expected before development of 

the synaptronic brain.  While many of the subsystems 

can be developed and standard workstations, the large 

scale simulations will require the use of a 

supercomputer. 

 Environments: The environments teams will develop an 

environment to test, train, and benchmark both the 

software simulations and the final synaptronic brain. 

The environments teams will also need to create tests 

incrementally increase task complexity and intelligent 

response to evaluate the progress of the project.   

 

The initial coordination plan for C2S2 includes the 

Synapse VE 
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Fig 2.  C2S2 team coordination and data flow through several quasi-biological neuromorphic systems. This effort is an attempt to approximate the 

future final system design with a software prototype.  Each box is a different team. 



  

following. While the hardware team evaluates materials and 

designs to approximate synapses and brain sub-systems, the 

simulations and architecture teams start to build a fully 

simulated prototype of the neuromorphic system. In parallel, 

the environments team is to create a virtual environment 

(VE) to bind coordination efforts and integrate simulations. 

 

III. ENVIRONMENT FOR BENCHMARKING AND TRAINING 

A. Motivation 

Our goal as part of the Environments and testing team was to 

create a testing and training environment to support all other 

teams in the development and benchmarking of their 

components of the system. Our mission was that the 

environment had to support 

 

1. fast environment development 

2. accelerated training 

3. incremental testing 

4. benchmarking 

5. wide range of environment fidelity 

6. wide range of task complexity 

 

In response to these requirements, we created the Synapse 

Virtual Environments Server (Synapse VE Server) as a 

common interface layer for all the teams working on the 

C2S2 project. The Synapse VE Server is integrated with a 

system called the Unified System for Automation and Robot 

Simulation (USARSim) [6] which provides a framework for 

creating, controlling, and interacting with a robot in a VE 

(see Fig 1).  While it is true that each C2S2 team could use 

USARSim to do their own development and testing, 

providing one common interface has several benefits: 

- removes redundant work,  

- standardizes the training and benchmarking, 

- provides a unified look-and-feel to the project 

- serves as a point of integration for the 

neuromorphic system components 

 

Using USARSim was logical given that it solves many of 

the problems we would encounter attempting to interface 

with a VE. Another benefit is that USARSim provides a way 

to control and monitor a player in a commercially available 

game called Unreal Tournament 2004 produced by Epic 

Games [7].  This game is a standard multi-player networked 

combat-oriented first-person for both Windows and Linux 

operating systems. Commercially available VEs tend to be of 

higher quality---e.g., more realistic, provide development 

tools, and have a pre-built physics engines. The labor and 

cost of developing our own VE of similar quality would be 

far beyond the resources of this project.  No doubt, if we 

were forced to created our own VE, it would not have the 

complexity and realism necessary to test and train 

neuromorphic systems. Another benefit is that every 

improvement in the Unreal Tournament game can be realized 

quickly to the benefit of the C2S2 project. Any new objects 

and art created for the game can be used immediately.  

B. USARSim 

USARSim was created to be a research and education tool 

to provide researchers with an easy-to-use robot controller 

(e.g., Human Robot Interaction [8]) and automation 

interface. USARSim also makes it easy for students to learn 

and explore controlling robots. USARSim is currently 

heavily used in the Robot World Cup Initiative (i.e., 

Robocup) community---an international community of 

researchers and educators working to foster intelligent robots 

research [9]. This is achieved by providing a standardized 

problem (the Robocup competition) around which a range of 

technologies can be developed and benchmarked. The 

Robocup competition has three main components: 1) 

Robocup soccer, 2) Robocup rescue, and 3) Robocup Junior. 

USARSim has been developed with these uses in mind so the 

tool comes with many prebuilt robots, sensors, and arenas. 

Much of these materials are robot specific such as sensors 

for sonar distance and laser range finders, for example. Also 

included is preprioceptive feedback like robot battery power 

and wheel speed. These are hardly of interest for developing 

neuromorphic systems yet, they provide an excellent starting 

point for, say, more biologically relevant proprioceptive 

feedback (i.e., muscle tension and vestibular).   

USARSim is already being used for benchmarking robots 

Fig. 3. Top image shows stereoscopic camera view from robot 

perspective. Bottom image is robot position in a low complexity task.  



  

performing in a search and rescue environment. The National 

Institute of Standards’ (NIST) Reference Test Facility for 

Autonomous Mobile Robots for Urban Search and Rescue 

was designed as a physical benchmarking environment. 

USARSim has the robots, environments, and sensors to 

recreate this testing facility to a high degree of realism in the 

virtual world. Realism in an urban search and rescue 

environment usually includes damaged walls, chairs, and 

other objects found inside of buildings. It also includes 

rubble blocked paths, and injured people. The NIST USAR 

virtual test environment has three levels of increasing 

difficulty (just like the physical facility) including yellow 

(i.e., easiest), orange, and red (i.e., most difficult). 

Specifically, USARSim uses the Unreal Engine 2.0 

through an interface called Gamebots, This interface allows 

an external application to exchange information, control and 

monitor, with the engine. While the internals of Unreal 

Engine 2.0 are proprietary and closed, Epic Games does 

provide a modding capability for extending ―classes‖ of 

objects in that run in the engine and the Unreal Virtual 

Machine. This comes in the form of a Javascript like 

language called Unrealscript in which objects in the game 

can be defined and subclassed.  

IV. SYNAPSE VE SERVER 

A. Motivation 

While USARSim is could be used by each team on the 

C2S2 project individually, the DARPA requirement for 

project integration required us to create a special layer---i.e., 

Fig. 4. Screenshot of the Synapse VE Server GUI. In the upper-left corner the complexity of the task can be selected by the map drop-down list.  The 

robot can also be selected. On the left side of the GUI is all the control functions.  The robot can be controlled manually in real-time for testing purposes 

with the forward, left, right, back buttons. Output is shown on the right with real-time video (third-person or robot camera) and sensor data output at 15 

updates per second. 



  

the Synapse VE Server. The purpose of this layer is to 

provide a simple ready-to-run virtual testing environment 

where research teams could select task complexity and 

training runs. Then they would process the input with their 

part of the system (neuromorphic subsystem) and output 

control signals to the Synapse VE server. The Synapse VE 

provides all of the sensors, effectors, environments, and 

testing experiments needed while gathering all the 

customized project elements into one place.  

Development of the neuromorphic system has necessarily 

required a layered team approach in which one team 

develops a base layer (i.e., the VE). Another team takes data 

from the environment into a retinal model for processing. 

Another team takes the data from the retinal model into a 

liquid state machine classifier. Another team takes output 

from the classifier into a navigation attractor network and so 

on.  As shown in Fig 2, the teams are broken down into 

general layers to create a software model of the 

neuromorphic system. Additional layers, details, subsystems, 

and microcircuitry will be added later. 

 Another problem with each team creating their own task 

and training environments is that creating environments is 

rather complex and time consuming. While Epic Games 

provides the Unreal Editor (UnrealEd) in order to 

graphically create environments, the process is really quite 

complex and error prone. If customized geometry (3D 

objects) and textures need to be created, it becomes even 

more difficult requiring a additional set of tools and 

applications.  Each team would probably have to dedicate 

one person to VE development. 

B. Server Overview 

The Synapse VE Server was designed to provide multiple 

channels of output from the VE and allow for multiple 

channels of input (see Fig. 5). This supports ground-truth 

testing at almost any level of system development. Ideally, 

the neuromorphic system should be able to transduce raw 

data into spike-pulse codes and output spike-pulse muscle 

responses. But, until all the low-level component systems are 

built this is not a reality.  Are we to wait for the entire system 

to be completed before testing? This seems inefficient. So, 

the server supports channels of input and output with pre-

transformed data. For example, the Synapse VE Server 

provides a channel of output from the VE that is a raw image 

showing what the robot is currently viewing. Another 

simultaneous channel of output is the current visual objects 

or perceptual cues that the robot is viewing. Any team 

working on perception and classification can use these 

channels to test or train their system. Likewise, a team that is 

working on robot navigation can use the perceptual cues as 

input and system testing without needing a working 

perceptual system component to transform the raw image.  

C. Server architecture 

The Synapse VE Server is a stand-alone Java application 

that was built on a standard client-server model---the 

neuromorphic system or subsystem is the client. The client 

connects to the server via HTTP at port 8080 to send 

commands in plain text (i.e., post) and receives the requested 

data. This architecture allows clients to be written in any 

programming language that can interact with HTTP (most 

modern languages and systems).  This approach also allows 

the work of the client to be distributed to multiple machines, 

and also allows for geographic separation of client and 

server if desired. 

A ―pull‖ or request model of data exchange was used as 

the processing requirements/capabilities of the client would 

not be known ahead of time. Additional benefits of this 

model include, 1) off-loading of computation to a separate 

machine that runs the VE and 2) different APIs are not 

required for each client language. The Synapse VE Server, 

however, must run on the same machine as USARSim and 

Unreal Tournatment as it starts both the Unreal server and 

client with the needed settings. The server communicates 

with USARSim through the standard message port (i.e., 

3000).  

A custom C++ DLL was created to provide raw image 

data to clients and to improve performance. This was 

achieved using Hook.dll to pull video data directly from the 

Microsoft DirectX framebuffer for the Unreal Tournament 

client thereby capturing the robot camera. The Java Native 

Interface provides a way for the Synapse VE Server to 

interface with the custom DLL. Performance tests show that 

640x480 24bit image arrays can be captured as fast as 25 

times per second (fps) or near real-time. Improvements will 

be required in this performance as the retinal model becomes 

more sophisticated. Given that there are about 126 million 

rods and cones in the human retina, the spatial resolution will 

have to be much higher. 

Thus far, only one customized sensor has been created to 

detect visual (perceptual) cues in the VE. This sensor, called 

the perceptual cue sensor, was written in Unrealscript as a 

subclass of the USARSim Sensor class. It was added to the 

StereoP2AT robot in the USARBots.ini configuration file. 

This sensor runs in the game engine and scans through all the 

visible (i.e., the robot’s field of view) staticmeshes (i.e., 3D 
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objects) and reports back on the ones with the keyword cue 

in the label field. Thus, one can make any staticmesh in the 

environment a visual cue that is reported by the perceptual 

cue sensor simply by changing the label to have the word cue 

somewhere in the string. The perceptual cue sensor also 

computes the angle off center, the absolute x,y,z location, 

and the x.y.z distance of the visual cue. This information is 

included in the sensor message that is returned. Figure 3 

shows the robot field of view on the top for each of the two 

cameras and its location in the environment on the bottom. 

One of the task environments is shown in Fig. 3 on the 

bottom. This indoor maze in with four rooms and corridors 

was created using a set of wall ―objects‖ and other 

staticmeshes. This environment provides a template to 

quickly construct a maze with any number of rooms and 

branches. The Unreal Editor allows whole branches and 

sections to be selected, copied, and pasted. Also, the 

environments team can take any image file and put it in the 

maze as a perceptual object. Thus, almost any type of task or 

level of complexity can be rapidly created using this 

template environment. 

D. Interface 

The server has two interfaces. The first is a standard GUI 

that supports debugging and monitoring for the server (see 

Fig. 4). The second is a web-based interface that supports 

remote manual and programmatic control. 

The GUI displays a real-time robot camera view at the 

upper right by acquiring video from the game engine’s 

display window.  Movement commands (left, right, forward, 

back) are used to move the robot. Both the GUI window and 

the game engine’s display window are dynamically updated. 

The GUI can also be used to send specific commands to the 

robot and the real-time environment through the two 

command windows. To send USARSim Commands, the user 

enters commands in the appropriate window and presses 

―Execute‖ (for a list of all commands, see the USARSim 

manual. To send specific VE Commands, the user enters 

commands in the window and presses ―Execute‖ (commands 

include: ―face <cue>,‖ which instructs the robot to rotate 

until it is facing the named perceptual cue; and ―gotoward 

<cue>,‖ which instructs the robot to rotate as above and then 

proceed toward the named perceptual cue).  The GUI also 

displays sensor information, including ―Ground Truth,‖ 

which displays the robot location (in meters) and orientation 

(in radians) with respect to the (x,y,z) axes; ―Perceptual 

Cue,‖ which is a list of all labeled cues in the robot's 

unobstructed field of view with location of each cue (x,y,z) 

in the environment; and ―Ground Vehicle,‖ which contains 

additional detail on various parameters related to the robot’s 

operation and state. 

A web server embedded in the Synapse VE Server allows 

commands to be sent to the robot in the VE via http through 

a browser window or programmatically.  To use this 

interface, the user launches a web browser and types the 

following URL: http://{host_name}:8080/.  The 

response ―welcome to the Synapse VE Server‖ indicates the 

server is working correctly.  Commands are passed to the 

robot using the following request syntax:   

http://{host_name}:8080/command where 

―/command‖ can be any one of the following: /robot to 

obtain details about the robot, such as location and 

orientation. Location is given in meters and orientation is in 

radians on the (x,y,z) axes; /cues to obtain a formatted list 

of all the labeled cues in the robot's unobstructed field of 

view; /image.png or /image.jpg  to fetch either a 

PNG or JPEG image from the current game engine display 

window; /forward, /backward, /left, /right 

or /halt to move the robot forward, backward, left or 

right—note that motion continues until a halt command is 

issued. 

V. VE TASK COMPLEXITY 

 

Sensory-motor interaction with an evolving, changing 

environment is a key to intelligent behavior, as all intelligent 

must be both situated and embodied. The behavioral tasks 

for the neuromorphic system fall into three broad cognitive 

categories, highlighting problems of perception, planning, 

and navigation.  Though the original proposal outlined three 

separate environments (one for each category of task), we 

revised the plan such that a single 3D virtual world was used 

to develop tasks that highlight each of the three kinds of 

problems.  This change made for a uniform and elegant 

conceptual design of the VE. All tasks are conceived as 

traversals on state-space graph, with perception as state 

identification based solely on the current state, navigation as 

action selection based on the current state and previous 

states, and planning as action selection based on prediction 

of the consequences of future possible actions.  In the state-

space framework, all tasks are versatile, extensible, 

indefinitely scalable in complexity, and are amenable to 

Fig 6. Testing of retinal model and spiking navigation systems in the 

VE with a low complexity four room/state task. The response of 

spiking neurons for navigation is shown right-top and the retinal spike 

response is shown right-bottom. 



  

objective, quantitative, and comparative performance 

evaluation. The tasks can be extended to provide interaction 

over a wide range of space and time scales, and can offer 

comparison to behavioral studies. 

Figure 6 shows a relatively simple task environment with 

only four states (decision points) shown by the four 

interconnected rooms. The retinal spiking model takes the 

raw image data and transforms it into edges and perceptual 

objects (right-bottom part of Fig. 6). The attractor spiking 

network takes the perceptual objects as input (spiking input) 

to detect a) current state and b) next desired state. The 

attractor network response is shown in the right-top part of 

Fig. 6. 

While the current maze-like task environment appears 

somewhat artificial, it may be desirable in future work to 

allow the actual VE to take on different visual characteristics 

of other, more realistic-naturalistic environments. We have 

formulated an approach whereby the graph traversal 

formalization (and its attendant benefits of comparability and 

quantification) can be maintained and applied to more 

naturalistically-rendered environments. Such is 

diagrammatically illustrated in Fig. 7. In this an environment, 

task complexity is conceived in terms of three dimensions: 

the number of different perceptual states processed by the 

agent, the degree of memory (history) and/or prediction 

(anticipation), and the level of symbolic abstraction involved 

in the perception-action relation. Actual traversals would 

involve tasks of systematically-varying perceptual difficulty 

and complexity, with local and global orientation cues made 

available or obscured in a controlled (and perhaps dynamic) 

manner. 

 

VI. CONCLUSION & FUTURE WORK 

 

Our goal as part of the Environments and testing team was to 

create a benchmarking and training environment to support 

all other teams in the development of their components of the 

neuromorphic system. Our mission was that the environment 

had to support 

 

1. fast environment development 

2. accelerated training 

3. incremental testing 

4. benchmarking 

5. wide range of environment fidelity 

6. wide range of task complexity 

 

We have made significant strides in achieving fast VE 

development, incremental testing, and high VE fidelity given 

the use of the USARSim framework. Because parts of the 

task environment can be copied and pasted, components are 

be reused and new task configurations can be quickly 

created. Environment development is clearly faster than 

using a physical test facility. VE fidelity too can be easily 

decreased or increased depending on what would provide a 

challenge for any part of the neuromorphic system. For 

example, the lighting can be manipulated so that there is no 

directional lighting or shadows (low fidelity) or there is only 

directional lighting with many different types of lightsources 

(high fidelity).  Having this capability means that 

incremental testing is possible. 

Still, further technical work is needed to increase fidelity 

in certain areas. One such area includes increasing the 

number of input channels to more than just vision and some 

types of proprioceptive feedback. This would mean adding 

sensors for hearing, touch, olfactory, and taste channels. 

Also, these modalities may have to be added to the Unreal 

Tournament environment as it was not designed to provide 

olfaction simulation, for example.  

This would also mean that the data rate of information for 

each of these channels was high enough to simulate real-

world stimuli. As stated earlier, the current image data rate is 

only a 640x480 24bit pixel array 25 times per second. That 

is merely 23 Mbps---a bitrate that is only a small proportion 

of the data entering the eye. To improve performance the 

system architecture may need to be redesigned with a faster 

UDP-based protocol such as RTSP instead of HTTP. 

Accelerated training is the least known among all the 

goals. Technical research needs to be conducted to see 1) if 

the Unreal Engine can be accelerated and by how much, 2) 

how USARSim sensors and other components can be 

accelerated in a unified and consistent manner, 3) how this 

acceleration interacts with performance characteristics of the 

server hardware, 4) how much can the input and output data 

rates be accelerated? 

We have defined the environment in terms of transversals 

in a state-space graph. This graph then could lead to a 

method for measuring task complexity. However more 

theoretical work is needed before a quantitative measure of 

task complexity can be achieved. Also, providing a 

Fig 7. Illustration of a possible ―gameboard‖ structure to underlie 

future VE renderings of more naturalistic environments while 

preserving the formalization of state-space graph transitions. 

 



  

quantitative measure for task complexity would be central to 

efforts at benchmarking neuromorphic system performance. 

Finally, future work will be aimed at creating a player in 

the VE that resembles a mammal rather than a robot. The 

mammal should have articulated joints with fairly realistic 

skeletal muscle control. This will allow for the development 

of neuromorphic motor cortex and cerebellum subsystems.  
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