



Abstract—Neuromorphic systems are a particular class of AI

efforts directed at creating biologically analogous systems

functioning in a natural environment. The development, testing,

and training of neuromorphic systems are difficult given the

complexity and implementation issues of real physical worlds.

Certainly, creating physical environments that allow for

incremental development of these systems would be time-

consuming and expensive. The best solution was to employ a

high-fidelity virtual world that can vary in task complexity and

be quickly reconfigured. For this we chose to use USARSim---

an open source high-fidelity robot simulator with a high degree

of modularity and ease-of-use. We were able to accelerate our

testing and demonstration efforts by extending the functionality

of USARSim for testing neuromorphic systems. Future

directions for extensions and requirements are discussed.

I. INTRODUCTION

Artificial intelligence (AI) has always been a vastly broad

and multidisciplinary field including everything from

decision making agents in economic models to pattern

recognition systems, to learning models, to natural language

processing algorithms to name a few (see [1]). While some

approaches are biologically inspired, many treat the system

like a black-box such that only the observable behavior need

show intelligent or human-like qualities. In contrast,

neuromorphic systems are a particular class of AI systems

aimed not at just biologically inspired models, but

biologically and psychologically analogous systems.

Neuromorphic systems can model many levels including

Manuscript received July 17, 2009. This work was supported in part by

the U.S. Department of Defense Advanced Research Projects Agency

(DARPA), Defense Sciences Office (DSO) under ―Cognitive Computing

via Synaptronics and Supercomputing (C2S2)‖, DARPA Contract No. 11-

09-C-0002. October 2008 – July 2009. Distribution Statement ―A‖

(Approved for Public Release, Distribution Unlimited) by DISTAR Case

14006.

Christopher S. Campbell is a Research Staff Member at the IBM

Almaden Research Center, 650 Harry Rd, San Jose, CA 95120 (408-927-

1784; e-mail: ccampbel@almaden.ibm.com).

Ankur Chandra is a Research Software Architect at the IBM Almaden

Research Center, 650 Harry Rd, San Jose, CA 95120 (408-927-2455; e-

mail: achandra@us.ibm.com).

Ben Shaw is an Associate Researcher at the IBM Almaden Research

Center, 650 Harry Rd, San Jose, CA 95120 (408-927-2659; e-mail:

shawbe@us.ibm.com).

Paul P. Maglio is a Senior Research Manager at the IBM Almaden

Research Center, 650 Harry Rd, San Jose, CA 95120 (408-927-2857; e-

mail: pmaglio@almaden.ibm.com).

Christopher Kello is an Associate Professor in the School of Social

Sciences, Humanities and Arts, at the University of California, Merced,

5200 North Lake Rd., Merced, CA 95343 (e-mail: ckello@ucmerced.edu).

intra-cellular processes, neuron growth and learning, as well

as whole brain systems and connections among them.

However, due to the complexity of many nervous systems

(i.e., mammalian brains), neuromorphic systems work

usually involves an attempt to model only a part or

subsystem of an entire nervous system.

Neuromorphic systems research in the software domain

has focused on creating simulations of biological systems at

all scales. A strong push in this direction was seen in the

explosion of research on neural networks and parallel

distributed processing in the 1980s [2]. Much of this work

was inspired by theoretical considerations of neural

organization going back to the 1950s. Such is the case with

the Perceptron [3] (a simple feed-forward network of

simulated neurons) and Hebbian learning theory [4]. A

digital simulation of a ―large‖ 512 neuron neural network

was also conducted in IBM Research at this time [5].

In contrast the software simulation, neuromorphic systems

research in the hardware domain involves building actual

circuits that represent a brain or brain subsystem. A growing

interest group has been in existence from the 1980s and the

bulk to research focuses on intelligent robotics, low-level

perception and motor control.

Neuromorphic technology that replaces programmable

systems with learning or adaptive systems would be a

significant step forward. If we subscribe to Turing’s idea that

intelligent systems merely need to demonstrate intelligent

behavior, then programmable systems will be sufficient.

Neuromorphic System Testing and Training in a Virtual

Environment based on USARSim

Christopher S. Campbell, Ankur Chandra, Ben Shaw, Paul P. Maglio, Christopher Kello

Fig. 1. Synapse 3D Virtual Environment.

However, there is a growing consensus that intelligence

involves more than just the demonstration of intelligent

behavior through specific task performance. Rather

intelligence requires that good outcomes in task performance

are accompanied by additional characteristics such as

flexibility, efficiency, generalizability, and creativity. In

other words, intelligence is not necessarily just solving a

problem, but also the manner in which the problem is solved.

Thus neuromorphic systems solve problems in a desirable

manner which produces a host of useful qualities:

- managing complex, real-world, dynamic

environments

- efficient energy use in terms of power

- efficient information processing

- robustness to damage

- self-organizing and scalable systems

- creative and adaptive use of the environment

The development of neuromorphic systems is without

question challenging and complex. Even the simplest

mammalian nervous systems have tens of millions of neurons

and thousands of interconnected brain structures. To build

such a system would require an unprecedented multi-

disciplinary team that can work in areas such as

computational neuroscience, artificial neural networks, large-

scale computation, neuromorphic VLSI, information science,

cognitive science, materials science, unconventional

nanometer-scale electronics, and CMOS design and

fabrication.

II. BUILDING A NEUROMORPHIC SYSTEM

The Cognitive Computing via Synaptronics and

Supercomputing (C2S2) project is a large multi-organization

and multi disciplinary effort aimed at creating both the

hardware and software components of a neuromorphic

system on the scale of a small mammal (i.e., rat). The goal is

to create hardware components that behave like biological

synapses so the term synaptronics is used to refer to the

hardware. These collaborating organizations include at IBM

Almaden Research Center, Stanford University, Cornell,

Columbia University, The University of Wisconsin-Madison,

and The University of California-Merced. Each organization

may have multiple teams. This effort is in response to a

DARPA BAA (i.e., DARPA-BAA 08-28) called Systems of

Neuromorphic Adaptive Plastic Scalable Electronics

(Synapse) requesting proposals for the development of a

neuromorphic system.

There are four main areas if the project and these various

teams may work in one or more of these areas. They

include:

 Hardware: The hardware teams are responsible for

building the circuitry for the synaptronic brain from the

materials all the way to the full-scale system. They are

responsible for creating components that mimic

biological synapses showing spike-based information

encoding and spike time dependent plasticity (STDP).

 Architecture: The architecture teams will evaluate and

compile the literature on brain anatomy, physiology, and

function. They are responsible for designing the

architecture of the synaptronic brain such that it

approximates the connectivity, modularity, hierarchical

organization, self-organization, reinforcement, and

inhibition systems of a biological brain. Processing will

should also be distributed, inherently noise-tolerant, and

robust to damage.

 Simulations : The simulations teams are responsible for

creating software to test and explore subsystems to

ensure they perform as expected before development of

the synaptronic brain. While many of the subsystems

can be developed and standard workstations, the large

scale simulations will require the use of a

supercomputer.

 Environments: The environments teams will develop an

environment to test, train, and benchmark both the

software simulations and the final synaptronic brain.

The environments teams will also need to create tests

incrementally increase task complexity and intelligent

response to evaluate the progress of the project.

The initial coordination plan for C2S2 includes the

Synapse VE

Input: Spikes Control

Virtual Robot Moves

Output: Bitmap Code

Robot Camera Images

Retinal Model

Input: Bitmap Code

VE Sensory Data

Output: Spike Code

Retinal Signal

Attractor Network

Input: Classifier

Signal State Changes

Output: Spike Code

Movement Actions

Liquid State Machine

Input: Spike Code

Perceptual Data

Output: Classifier Code

Perceptual States

Fig 2. C2S2 team coordination and data flow through several quasi-biological neuromorphic systems. This effort is an attempt to approximate the

future final system design with a software prototype. Each box is a different team.

following. While the hardware team evaluates materials and

designs to approximate synapses and brain sub-systems, the

simulations and architecture teams start to build a fully

simulated prototype of the neuromorphic system. In parallel,

the environments team is to create a virtual environment

(VE) to bind coordination efforts and integrate simulations.

III. ENVIRONMENT FOR BENCHMARKING AND TRAINING

A. Motivation

Our goal as part of the Environments and testing team was to

create a testing and training environment to support all other

teams in the development and benchmarking of their

components of the system. Our mission was that the

environment had to support

1. fast environment development

2. accelerated training

3. incremental testing

4. benchmarking

5. wide range of environment fidelity

6. wide range of task complexity

In response to these requirements, we created the Synapse

Virtual Environments Server (Synapse VE Server) as a

common interface layer for all the teams working on the

C2S2 project. The Synapse VE Server is integrated with a

system called the Unified System for Automation and Robot

Simulation (USARSim) [6] which provides a framework for

creating, controlling, and interacting with a robot in a VE

(see Fig 1). While it is true that each C2S2 team could use

USARSim to do their own development and testing,

providing one common interface has several benefits:

- removes redundant work,

- standardizes the training and benchmarking,

- provides a unified look-and-feel to the project

- serves as a point of integration for the

neuromorphic system components

Using USARSim was logical given that it solves many of

the problems we would encounter attempting to interface

with a VE. Another benefit is that USARSim provides a way

to control and monitor a player in a commercially available

game called Unreal Tournament 2004 produced by Epic

Games [7]. This game is a standard multi-player networked

combat-oriented first-person for both Windows and Linux

operating systems. Commercially available VEs tend to be of

higher quality---e.g., more realistic, provide development

tools, and have a pre-built physics engines. The labor and

cost of developing our own VE of similar quality would be

far beyond the resources of this project. No doubt, if we

were forced to created our own VE, it would not have the

complexity and realism necessary to test and train

neuromorphic systems. Another benefit is that every

improvement in the Unreal Tournament game can be realized

quickly to the benefit of the C2S2 project. Any new objects

and art created for the game can be used immediately.

B. USARSim

USARSim was created to be a research and education tool

to provide researchers with an easy-to-use robot controller

(e.g., Human Robot Interaction [8]) and automation

interface. USARSim also makes it easy for students to learn

and explore controlling robots. USARSim is currently

heavily used in the Robot World Cup Initiative (i.e.,

Robocup) community---an international community of

researchers and educators working to foster intelligent robots

research [9]. This is achieved by providing a standardized

problem (the Robocup competition) around which a range of

technologies can be developed and benchmarked. The

Robocup competition has three main components: 1)

Robocup soccer, 2) Robocup rescue, and 3) Robocup Junior.

USARSim has been developed with these uses in mind so the

tool comes with many prebuilt robots, sensors, and arenas.

Much of these materials are robot specific such as sensors

for sonar distance and laser range finders, for example. Also

included is preprioceptive feedback like robot battery power

and wheel speed. These are hardly of interest for developing

neuromorphic systems yet, they provide an excellent starting

point for, say, more biologically relevant proprioceptive

feedback (i.e., muscle tension and vestibular).

USARSim is already being used for benchmarking robots

Fig. 3. Top image shows stereoscopic camera view from robot

perspective. Bottom image is robot position in a low complexity task.

performing in a search and rescue environment. The National

Institute of Standards’ (NIST) Reference Test Facility for

Autonomous Mobile Robots for Urban Search and Rescue

was designed as a physical benchmarking environment.

USARSim has the robots, environments, and sensors to

recreate this testing facility to a high degree of realism in the

virtual world. Realism in an urban search and rescue

environment usually includes damaged walls, chairs, and

other objects found inside of buildings. It also includes

rubble blocked paths, and injured people. The NIST USAR

virtual test environment has three levels of increasing

difficulty (just like the physical facility) including yellow

(i.e., easiest), orange, and red (i.e., most difficult).

Specifically, USARSim uses the Unreal Engine 2.0

through an interface called Gamebots, This interface allows

an external application to exchange information, control and

monitor, with the engine. While the internals of Unreal

Engine 2.0 are proprietary and closed, Epic Games does

provide a modding capability for extending ―classes‖ of

objects in that run in the engine and the Unreal Virtual

Machine. This comes in the form of a Javascript like

language called Unrealscript in which objects in the game

can be defined and subclassed.

IV. SYNAPSE VE SERVER

A. Motivation

While USARSim is could be used by each team on the

C2S2 project individually, the DARPA requirement for

project integration required us to create a special layer---i.e.,

Fig. 4. Screenshot of the Synapse VE Server GUI. In the upper-left corner the complexity of the task can be selected by the map drop-down list. The

robot can also be selected. On the left side of the GUI is all the control functions. The robot can be controlled manually in real-time for testing purposes

with the forward, left, right, back buttons. Output is shown on the right with real-time video (third-person or robot camera) and sensor data output at 15

updates per second.

the Synapse VE Server. The purpose of this layer is to

provide a simple ready-to-run virtual testing environment

where research teams could select task complexity and

training runs. Then they would process the input with their

part of the system (neuromorphic subsystem) and output

control signals to the Synapse VE server. The Synapse VE

provides all of the sensors, effectors, environments, and

testing experiments needed while gathering all the

customized project elements into one place.

Development of the neuromorphic system has necessarily

required a layered team approach in which one team

develops a base layer (i.e., the VE). Another team takes data

from the environment into a retinal model for processing.

Another team takes the data from the retinal model into a

liquid state machine classifier. Another team takes output

from the classifier into a navigation attractor network and so

on. As shown in Fig 2, the teams are broken down into

general layers to create a software model of the

neuromorphic system. Additional layers, details, subsystems,

and microcircuitry will be added later.

 Another problem with each team creating their own task

and training environments is that creating environments is

rather complex and time consuming. While Epic Games

provides the Unreal Editor (UnrealEd) in order to

graphically create environments, the process is really quite

complex and error prone. If customized geometry (3D

objects) and textures need to be created, it becomes even

more difficult requiring a additional set of tools and

applications. Each team would probably have to dedicate

one person to VE development.

B. Server Overview

The Synapse VE Server was designed to provide multiple

channels of output from the VE and allow for multiple

channels of input (see Fig. 5). This supports ground-truth

testing at almost any level of system development. Ideally,

the neuromorphic system should be able to transduce raw

data into spike-pulse codes and output spike-pulse muscle

responses. But, until all the low-level component systems are

built this is not a reality. Are we to wait for the entire system

to be completed before testing? This seems inefficient. So,

the server supports channels of input and output with pre-

transformed data. For example, the Synapse VE Server

provides a channel of output from the VE that is a raw image

showing what the robot is currently viewing. Another

simultaneous channel of output is the current visual objects

or perceptual cues that the robot is viewing. Any team

working on perception and classification can use these

channels to test or train their system. Likewise, a team that is

working on robot navigation can use the perceptual cues as

input and system testing without needing a working

perceptual system component to transform the raw image.

C. Server architecture

The Synapse VE Server is a stand-alone Java application

that was built on a standard client-server model---the

neuromorphic system or subsystem is the client. The client

connects to the server via HTTP at port 8080 to send

commands in plain text (i.e., post) and receives the requested

data. This architecture allows clients to be written in any

programming language that can interact with HTTP (most

modern languages and systems). This approach also allows

the work of the client to be distributed to multiple machines,

and also allows for geographic separation of client and

server if desired.

A ―pull‖ or request model of data exchange was used as

the processing requirements/capabilities of the client would

not be known ahead of time. Additional benefits of this

model include, 1) off-loading of computation to a separate

machine that runs the VE and 2) different APIs are not

required for each client language. The Synapse VE Server,

however, must run on the same machine as USARSim and

Unreal Tournatment as it starts both the Unreal server and

client with the needed settings. The server communicates

with USARSim through the standard message port (i.e.,

3000).

A custom C++ DLL was created to provide raw image

data to clients and to improve performance. This was

achieved using Hook.dll to pull video data directly from the

Microsoft DirectX framebuffer for the Unreal Tournament

client thereby capturing the robot camera. The Java Native

Interface provides a way for the Synapse VE Server to

interface with the custom DLL. Performance tests show that

640x480 24bit image arrays can be captured as fast as 25

times per second (fps) or near real-time. Improvements will

be required in this performance as the retinal model becomes

more sophisticated. Given that there are about 126 million

rods and cones in the human retina, the spatial resolution will

have to be much higher.

Thus far, only one customized sensor has been created to

detect visual (perceptual) cues in the VE. This sensor, called

the perceptual cue sensor, was written in Unrealscript as a

subclass of the USARSim Sensor class. It was added to the

StereoP2AT robot in the USARBots.ini configuration file.

This sensor runs in the game engine and scans through all the

visible (i.e., the robot’s field of view) staticmeshes (i.e., 3D

Visual Sensor Processing Client

(Java)

Haptic Sensor Processing Client

(Python)

Learning System

(C++)

Motor Client

(Matlab)

Synapse

VE

Server Unreal

Tournament

USARSim

H T T PH T T P

Raw Visual Data

Raw Visual Data

Perceptual Cues

Raw Sensory Data

Motor Commands

Motor Commands Image

Processing

DLL

Visual Sensor Processing Client

(Java)

Haptic Sensor Processing Client

(Python)

Learning System

(C++)

Motor Client

(Matlab)

Synapse

VE

Server Unreal

Tournament

USARSim

H T T PH T T P

Raw Visual Data

Raw Visual Data

Perceptual Cues

Raw Sensory Data

Motor Commands

Motor Commands Image

Processing

DLL

Fig. 5. Synapse VE Server general architecture.

objects) and reports back on the ones with the keyword cue

in the label field. Thus, one can make any staticmesh in the

environment a visual cue that is reported by the perceptual

cue sensor simply by changing the label to have the word cue

somewhere in the string. The perceptual cue sensor also

computes the angle off center, the absolute x,y,z location,

and the x.y.z distance of the visual cue. This information is

included in the sensor message that is returned. Figure 3

shows the robot field of view on the top for each of the two

cameras and its location in the environment on the bottom.

One of the task environments is shown in Fig. 3 on the

bottom. This indoor maze in with four rooms and corridors

was created using a set of wall ―objects‖ and other

staticmeshes. This environment provides a template to

quickly construct a maze with any number of rooms and

branches. The Unreal Editor allows whole branches and

sections to be selected, copied, and pasted. Also, the

environments team can take any image file and put it in the

maze as a perceptual object. Thus, almost any type of task or

level of complexity can be rapidly created using this

template environment.

D. Interface

The server has two interfaces. The first is a standard GUI

that supports debugging and monitoring for the server (see

Fig. 4). The second is a web-based interface that supports

remote manual and programmatic control.

The GUI displays a real-time robot camera view at the

upper right by acquiring video from the game engine’s

display window. Movement commands (left, right, forward,

back) are used to move the robot. Both the GUI window and

the game engine’s display window are dynamically updated.

The GUI can also be used to send specific commands to the

robot and the real-time environment through the two

command windows. To send USARSim Commands, the user

enters commands in the appropriate window and presses

―Execute‖ (for a list of all commands, see the USARSim

manual. To send specific VE Commands, the user enters

commands in the window and presses ―Execute‖ (commands

include: ―face <cue>,‖ which instructs the robot to rotate

until it is facing the named perceptual cue; and ―gotoward

<cue>,‖ which instructs the robot to rotate as above and then

proceed toward the named perceptual cue). The GUI also

displays sensor information, including ―Ground Truth,‖

which displays the robot location (in meters) and orientation

(in radians) with respect to the (x,y,z) axes; ―Perceptual

Cue,‖ which is a list of all labeled cues in the robot's

unobstructed field of view with location of each cue (x,y,z)

in the environment; and ―Ground Vehicle,‖ which contains

additional detail on various parameters related to the robot’s

operation and state.

A web server embedded in the Synapse VE Server allows

commands to be sent to the robot in the VE via http through

a browser window or programmatically. To use this

interface, the user launches a web browser and types the

following URL: http://{host_name}:8080/. The

response ―welcome to the Synapse VE Server‖ indicates the

server is working correctly. Commands are passed to the

robot using the following request syntax:

http://{host_name}:8080/command where

―/command‖ can be any one of the following: /robot to

obtain details about the robot, such as location and

orientation. Location is given in meters and orientation is in

radians on the (x,y,z) axes; /cues to obtain a formatted list

of all the labeled cues in the robot's unobstructed field of

view; /image.png or /image.jpg to fetch either a

PNG or JPEG image from the current game engine display

window; /forward, /backward, /left, /right

or /halt to move the robot forward, backward, left or

right—note that motion continues until a halt command is

issued.

V. VE TASK COMPLEXITY

Sensory-motor interaction with an evolving, changing

environment is a key to intelligent behavior, as all intelligent

must be both situated and embodied. The behavioral tasks

for the neuromorphic system fall into three broad cognitive

categories, highlighting problems of perception, planning,

and navigation. Though the original proposal outlined three

separate environments (one for each category of task), we

revised the plan such that a single 3D virtual world was used

to develop tasks that highlight each of the three kinds of

problems. This change made for a uniform and elegant

conceptual design of the VE. All tasks are conceived as

traversals on state-space graph, with perception as state

identification based solely on the current state, navigation as

action selection based on the current state and previous

states, and planning as action selection based on prediction

of the consequences of future possible actions. In the state-

space framework, all tasks are versatile, extensible,

indefinitely scalable in complexity, and are amenable to

Fig 6. Testing of retinal model and spiking navigation systems in the

VE with a low complexity four room/state task. The response of

spiking neurons for navigation is shown right-top and the retinal spike

response is shown right-bottom.

objective, quantitative, and comparative performance

evaluation. The tasks can be extended to provide interaction

over a wide range of space and time scales, and can offer

comparison to behavioral studies.

Figure 6 shows a relatively simple task environment with

only four states (decision points) shown by the four

interconnected rooms. The retinal spiking model takes the

raw image data and transforms it into edges and perceptual

objects (right-bottom part of Fig. 6). The attractor spiking

network takes the perceptual objects as input (spiking input)

to detect a) current state and b) next desired state. The

attractor network response is shown in the right-top part of

Fig. 6.

While the current maze-like task environment appears

somewhat artificial, it may be desirable in future work to

allow the actual VE to take on different visual characteristics

of other, more realistic-naturalistic environments. We have

formulated an approach whereby the graph traversal

formalization (and its attendant benefits of comparability and

quantification) can be maintained and applied to more

naturalistically-rendered environments. Such is

diagrammatically illustrated in Fig. 7. In this an environment,

task complexity is conceived in terms of three dimensions:

the number of different perceptual states processed by the

agent, the degree of memory (history) and/or prediction

(anticipation), and the level of symbolic abstraction involved

in the perception-action relation. Actual traversals would

involve tasks of systematically-varying perceptual difficulty

and complexity, with local and global orientation cues made

available or obscured in a controlled (and perhaps dynamic)

manner.

VI. CONCLUSION & FUTURE WORK

Our goal as part of the Environments and testing team was to

create a benchmarking and training environment to support

all other teams in the development of their components of the

neuromorphic system. Our mission was that the environment

had to support

1. fast environment development

2. accelerated training

3. incremental testing

4. benchmarking

5. wide range of environment fidelity

6. wide range of task complexity

We have made significant strides in achieving fast VE

development, incremental testing, and high VE fidelity given

the use of the USARSim framework. Because parts of the

task environment can be copied and pasted, components are

be reused and new task configurations can be quickly

created. Environment development is clearly faster than

using a physical test facility. VE fidelity too can be easily

decreased or increased depending on what would provide a

challenge for any part of the neuromorphic system. For

example, the lighting can be manipulated so that there is no

directional lighting or shadows (low fidelity) or there is only

directional lighting with many different types of lightsources

(high fidelity). Having this capability means that

incremental testing is possible.

Still, further technical work is needed to increase fidelity

in certain areas. One such area includes increasing the

number of input channels to more than just vision and some

types of proprioceptive feedback. This would mean adding

sensors for hearing, touch, olfactory, and taste channels.

Also, these modalities may have to be added to the Unreal

Tournament environment as it was not designed to provide

olfaction simulation, for example.

This would also mean that the data rate of information for

each of these channels was high enough to simulate real-

world stimuli. As stated earlier, the current image data rate is

only a 640x480 24bit pixel array 25 times per second. That

is merely 23 Mbps---a bitrate that is only a small proportion

of the data entering the eye. To improve performance the

system architecture may need to be redesigned with a faster

UDP-based protocol such as RTSP instead of HTTP.

Accelerated training is the least known among all the

goals. Technical research needs to be conducted to see 1) if

the Unreal Engine can be accelerated and by how much, 2)

how USARSim sensors and other components can be

accelerated in a unified and consistent manner, 3) how this

acceleration interacts with performance characteristics of the

server hardware, 4) how much can the input and output data

rates be accelerated?

We have defined the environment in terms of transversals

in a state-space graph. This graph then could lead to a

method for measuring task complexity. However more

theoretical work is needed before a quantitative measure of

task complexity can be achieved. Also, providing a

Fig 7. Illustration of a possible ―gameboard‖ structure to underlie

future VE renderings of more naturalistic environments while

preserving the formalization of state-space graph transitions.

quantitative measure for task complexity would be central to

efforts at benchmarking neuromorphic system performance.

Finally, future work will be aimed at creating a player in

the VE that resembles a mammal rather than a robot. The

mammal should have articulated joints with fairly realistic

skeletal muscle control. This will allow for the development

of neuromorphic motor cortex and cerebellum subsystems.

ACKNOWLEDGMENT

We would like to thank Stefano Carpin and the USARSim

team for development support and suggestions.

REFERENCES

[1] Simon, H. A. 1961. Modeling human mental processes. In Papers

Presented At the May 9-11, 1961, Western Joint IRE-AIEE-ACM

Computer Conference (Los Angeles, California, May 09 - 11, 1961).

IRE-AIEE-ACM '61 (Western). ACM, New York, NY, 111-119.

[2] Rumelhart, D.E., J.L. McClelland and the PDP Research Group

(1986). Parallel Distributed Processing: Explorations in the

Microstructure of Cognition. Volume 1: Foundations, Cambridge,

MA: MIT Press.

[3] Rosenblatt, F., "The Perceptron: A Probabilistic Model for

Information Storage and Organization in the Brain,' Psychological

Review, 65: 386-408" (November, 1958).

[4] Hebb, D.., Organization of Behavior, Wiley, 1949 .

[5] Rochester, N., J. H. Holland, L. H. Haibt and W. L. Duda, Tests on a

Cell Assembly Theory of the Action of the Brain Using a Large

Digital Computer,' IRS Trans. on Information Theory, IT-2; #3,

(September, 1956) .

[6] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, C. Scrapper (2007).

USARSim: a robot simulator for research and education. Proceedings

of the 2007 IEEE Conference on Robotics and Automation, pp. 1400-

1405.

[7] Epic games, http://www.unrealtechnology.com/

[8] M. Lewis, J. Wang, and S. Hughes (2007). "USARSim : Simulation

for the Study of Human-Robot Interaction", Journal of Cognitive

Engineering and Decision Making, (1)1, 98-120.

[9] Robot World Cup Initiative, http://www.robocup.org

http://www.unrealtechnology.com/
http://www.robocup.org/

