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Abstract 

 

A basic premise of research on word reading is that the reading system is composed of 

multiple processing pathways.  It is widely accepted that one of these pathways is 

lexical in nature, and a second, complementary one is sublexical in nature.  I will 

propose a junction model of word reading in which there are lexical and sublexical 

modes of processing, rather than pathways of processing.  The junction model was 

motivated by some basic considerations of the relationship between spoken and written 

language processing, and by observations of naming errors under severe time pressure 

in the tempo-naming task.  The model’s architecture was based on two main principles.  

First, lexical knowledge is acquired and represented as junctions of perception and 

action.  These junctions serve the dual-purpose of integrating over perceptual inputs 

that relate to individual words, as well as generating sequences of motor outputs that 

relate to words.  Second, lexical processing can be cast as a balancing act of 

competitive and cooperative interactions among words.  I present a conceptually simple 

pilot model in which the strengths of localist and distributed representation are 

leveraged to represent and process over 40,000 words of English.  The simulations 

faired well against the naming and lexical decision times for over 30,000 words in the 

Elexicon database (Balota et al., 2002), but many challenges remain on the road toward 

a more complete implementation.  Those challenges are among the discussion points 

that close the chapter. 
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The work presented in this chapter arose from two questions that may at first 

appear unrelated: should we accept the premise that skilled word reading is supported 

by lexical and sublexical pathways of processing, and how can we model the learning of 

orthographic and phonological representations for multisyllabic words?  The field as a 

whole has answered “yes” to the first question, but is mostly silent with regard to the 

second.  In this chapter, I argue that we should not take for granted the existence of 

lexical and sublexical pathways.  There may instead be lexical and sublexical modes of 

processing in a single, integrated system.  My collaborators and I have pursed this idea 

by exploring single-route theories of lexical processing in which orthographic, 

phonological, and semantic codes are all mediated by one level of representation.  In 

our pursuit we were forced to confront the long-standing problem of modeling 

multisyllabic words.  This chapter is an account of our efforts that have recently 

culminated in the junction model of lexical processing.   

The story begins with yet another question: how does speech fit into theories of 

word reading?  It is only common sense that written language processes are built upon 

spoken language processes.  Spoken language takes precedence in all senses of the 

word.  It is during speech acquisition that the phonological, morphological, and semantic 

structures of words are learned.  These structures are learned as a bridge between 

speech signals (acoustic, optical, and articulatory) and the rest of the language system.  

When orthographic structures are introduced, they must be learned in a way that fits 

with the bridge already in place.   

So how are orthographic inputs mapped onto spoken language processes in current 

theories of word reading?  An answer can be found in diagrams of the two major current 

frameworks, shown in Figure 1.  In the dual-route cascaded model (Coltheart, Curtis, 

Atkins, & Haller, 1993; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), orthographic 

inputs connect with the spoken language system via two routes of processing, one 

lexical and the other sublexical.  The sublexical processes break down the orthographic 

forms of words into sequences of graphemes, and a rule is used to essentially map 

each grapheme onto a corresponding phoneme.  Phonemes would be learned during 

spoken language acquisition, and are therefore part of the spoken language system.  

Lexical processes associate each orthographic word form as a whole with semantic and 
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phonological representations that would also be learned during spoken language 

acquisition. 

 

     
Figure 1.  Two diagrams of the lexical processing system.  The one on the left is taken from Patterson 

and Shewell (1987), and the one on the right is taken from Seidenberg and McClelland (1989).  Lexical 

and sublexical pathways of processing can be found in both diagrams. 

 

The answer is similar for the triangle framework of lexical processing (Plaut, 

McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989).  

Orthographic inputs are mapped onto phonological and semantic representations via 

two corresponding sets of hidden units.  The orthography-phonology mapping is 

sublexical in nature because in most languages there tend to be systematic relations 

between orthographic and phonological units that are smaller than the word.  The 

orthography-semantics mapping is lexical in nature because the relation between 

orthographic units and meaning is mostly unsystematic at the level of the morpheme 

(i.e., in English the letter ‘d’ bears no relation to the meaning of DOG). 

Why is it hypothesized in these frameworks that orthographic inputs connect with 

the spoken language system via two separate routes, one lexical and the other 

sublexical?  One reason is historical: researchers at one time believed that the functions 

performed by skilled readers required these two routes.  On the one hand, skilled 

readers can pronounce words like PINT and HAVE even though they do not conform to 

the systematic relations between orthography and phonology.  This ability suggests that 
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a lexical route is necessary to store the pronunciations of such irregular words 

individually.  On the other hand, skilled readers can give plausible pronunciations for 

nonwords like PILT and HOVE.  This ability suggests that a sublexical route is 

necessary to assemble novel pronunciations from grapheme-phoneme 

correspondences or the like. 

As it turns out, the ability to read aloud both irregular words and nonwords does not 

necessarily require a lexical and sublexical route.  Glushko (1979) explained how lexical 

representations might be used to generate nonword pronunciations via a process of 

analogy.  For instance the pronunciation of PILT might be computed as a blend of 

words like SILT and PILL.  Such an analogy model would be able to generate 

pronunciations for both irregular words and nonwords via a single route of processing.  

Seidenberg and McClelland (1989) then showed how a single level of distributed 

representation in a connectionist model can be used to generate pronunciations for both 

kinds of items.   

These demonstrations are valuable in delineating the space of viable theories, but 

most researchers still believe that orthographic inputs are connected to the spoken 

language system via two routes.  The main reason is evidence for the dissociation of 

lexical and sublexical processes.  This evidence has most notably come from surface 

versus phonological dyslexia in their acquired forms.  Surface dyslexia is characterized 

by poor reading of irregular words with relatively intact reading of nonwords (Behrmann 

& Bub, 1992).  Phonological dyslexia is characterized as the opposite, thereby forming a 

double dissociation (Funnell, 1983).  Double dissociations are usually interpreted as 

evidence for separable processes and this one is no exception.  How could surface and 

phonological dyslexia occur without a lexical route and a sublexical route?  Similar 

arguments have been made on the basis of evidence for strategic control of the two 

routes (Monsell, Patterson, Graham, Hughes, & et al., 1992; Zevin & Balota, 2000). 

 

Considering a single-route architecture 

The idea of lexical and sublexical routes appears to have good empirical support.  

But let us again consider the interface of orthography with the spoken language system.  

Does it make good sense for orthography to interface along these two routes?  The core 
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competency of spoken language is to map between sound and meaning.  We can 

probably all agree that processes and representations are learned during spoken 

language acquisition to support this mapping.  Reading requires a mapping to sound 

and meaning.  What if orthography interfaced with the representations that mediate 

sound and meaning (see Figure 2), rather than with sound and meaning themselves?   

 
 

Orthography 

Semantics Phonology 

Learned 

Learned Learned 

Spoken Language System 

Triangle Architecture 

     

 

Orthography 

Semantics Phonology 

Learned 

Spoken Language System 
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Figure 2.  Comparison of the triangle and single-pathway architectures 

 

This idea has a certain efficiency to it.  To start with, only one route of processing 

would be needed between orthography and the spoken language system.  The loss of a 

route seems more efficient in principle, but there is a more specific advantage in this 

case.  Orthographic inputs would be interfaced with what may be construed as 

morphological representations, because morphology is at the intersection of phonology 

and semantics (Plaut & Gonnerman, 2000).  If so, morphological structure would not 

need to be duplicated across two routes, as it is with lexical and sublexical routes.  

Having two routes leads to the duplication of morphology because the relation between 

semantics and phonology is structured similarly to that between semantics and 

orthography.   

So far so good, but there is an obvious question.  What about the evidence for a 

dissociation between lexical and sublexical processes?  Does this evidence already rule 

out a single-route architecture?  Not necessarily.  For one thing, Patterson and her 

colleagues have proposed that surface and phonological dyslexia may be explained by 

damage to semantic and phonological representations, respectively (Patterson & 

Hodges, 1992; Patterson & Marcel, 1992).  The logic of this idea can be seen in the fact 

that one terminal of the lexical route is semantics, and one terminal of the sublexical 
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route is phonology.  The idea has been criticized on the grounds that surface and 

phonological dyslexias do not always coincide with semantic and phonological 

impairments (Coltheart, 1996), but there have been counterarguments (Patterson & 

Lambon Ralph, 1999).  It is fair to say that the debate is undecided, which means that 

the single-route verdict remains open. 

The single-route architecture gains even more credibility when we consider a 

second way to account for the lexical/sublexical dissociation.  Kello and his colleagues 

(Kello, 2003; Kello, Sibley, & Plaut, in press; Sibley & Kello, 2004) recently showed how 

lexical and sublexical processing can be two modes of a single processing route.  A 

control parameter termed input gain was manipulated in a series of demonstration 

models with only one route of processing.  The single route was mediated by either 

localist or distributed representations.  Input gain had the effect of scaling the net inputs 

to processing units.  For both kinds of representation, low and high levels of input gain 

shifted the models between regularity-based and item-based modes of processing, 

respectively. 

These modes resulted in a clear double dissociation as shown in Figure 3.  The 

models were given a mapping task for a corpus of items that mostly but not entirely 

conformed to a simple rule (the identity mapping).  Mapping accuracy is plotted as a 

function of input gain for regular trained items (those conforming to the identity 

mapping), irregular trained items (those not conforming), and untrained items.  The 

pattern of results was the same for both localist and distributed models.  At low input 

gain, performance was near perfect for regular and novel items, but nearly all irregular 

items were “regularized”, that is, incorrectly given the identity mapping.  This 

performance profile is analogous to the defining characteristics of surface dyslexia.  At 

high input gain, performance was highly accurate for all trained items, but poor for novel 

items.  This profile is analogous to the defining characteristics of phonological dyslexia.   

Input gain caused a double dissociation for both localist and distributed 

representations because it affected the scope of knowledge that was brought to bear on 

the mapping task.  At low input gain, each input pattern was mapped according to a 

wide range of trained items with similar patterns.  Irregularities were essentially 

averaged out of the mapping.  At high input gain, each input pattern was mapped 
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according to a much smaller range of similar items, which hinders the generalization 

that relies on the regularities spanning across multiple items.   
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Figure 3.  Performance of localist (left) and distributed (right) models as a function of item type and input 

gain.  Taken from Kello et al. (in press). 

 

Input gain demonstrates a mechanism by which lexical (item-based) and sublexical 

(regularity-based) processing may be two modes of operation in a single-route model of 

lexical processing.  Surface and phonological dyslexia could therefore result from 

trauma or developmental abnormalities that restrict the flexibility of processing to a 

single mode.  While there are well-established neural correlates to input gain (Fellous & 

Linster, 1998), there is currently no data to determine whether such correlates may play 

a role in surface or phonological dyslexia.   

 

A hint of evidence in tempo-naming  

At this point in the argument we can say that there are principled reasons for 

believing that there is a single pathway of processing between orthography and the 

representations that mediate semantics and phonology.  We can also say that a single 

route is at least viable in the face of dissociations between lexical and sublexical 

processes.  But is there any evidence in favor of such a route?  In fact the idea was 

pursued in the first place because of observed naming errors that were readily 

accommodated by a single-route architecture, but not by dual-route architectures. 

The naming errors came from the tempo-naming task that was introduced by Kello 

and Plaut (Kello, 2004; Kello & Plaut, 2000).  In this task, an audiovisual metronome is 
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used to control the amount of time between the onset of a letter string and the initiation 

of a naming response.  The metronome is played for a set number of beats on each 

trial, and a letter string is displayed on the final beat.  Participants are instructed to 

name the letter string such that their response is timed with what would be the next beat 

of the metronome.  Feedback is given at the end of each trial to indicate whether the 

response was initiated early or late relative to the metronome.  Fast tempos can be 

used to induce a speed/accuracy tradeoff because they reduce the amount of time 

between stimulus onset and the cue to respond. 

Numerous experiments have shown that fast tempos lead to four basic categories 

of errors: articulatory (e.g., slurs and mis-starts), regularizations (e.g., PINT pronounced 

to rhyme with MINT), lexicalizations (e.g., BOARD pronounced as a similar word like 

BROAD), and nonword errors (e.g., STINT pronounced as a similar nonword like STIT).   

The question is, which kinds of errors should become more prevalent under time 

pressure, given a separation of lexical and sublexical pathways?   

To answer this question, Kello and Plaut (2000) ran simulations of the tempo-

naming task with the triangle and DRC models of lexical processing.  They found that 

both models generated a comparable increase in both regularization and lexicalization 

errors under time pressure.  The time pressure caused by faster tempos was simulated 

by sampling the models’ outputs at earlier points in the time course of processing 

relative to stimulus onset.  In another simulation, Kello and Plaut (2003) found the same 

result for the triangle model when time pressure was simulated by increasing the rate of 

processing. 

The tempo-naming experiments have yielded a different result.  As tempos 

increase, the rate of regularization errors has been shown to remain constant while the 

rates of other types of errors, including lexicalization errors, increase.  The lack of an 

increase in regularization errors means that time pressure in the tempo-naming task 

does not lead to a misapplication of sublexical spelling-sound correspondences.  But 

this is precisely what happened when time pressure was implemented in the triangle 

and DRC models.  So the question now becomes, how can time pressure be 

implemented in a model of lexical processing such that it does not lead to a 

misapplication of spelling-sound correspondences? 



10 

One possible answer can be found by delving into the reason why time pressure led 

to an increase in regularization errors in the triangle model.  As mentioned earlier, the 

mapping between orthography and phonology is much more systematic (due to 

spelling-sound correspondences) than the mapping between semantics and either 

orthography or phonology, at least in English.  Distributed representations are more 

adept at processing systematic mappings compared with arbitrary mappings.  This is 

because by default similar inputs generate similar distributed representations, and 

similar distributed representations generate similar outputs.  As a result of this 

adeptness, the relatively direct mapping between orthography and phonology is 

computed more quickly in the triangle model, compared with the same mapping that is 

mediated by semantics (Van Orden, Bosman, Goldinger, & Farrar, 1997).  The 

consequence is that spelling-sound correspondences represented in the direct mapping 

lead to increases in regularization errors when time pressure is simulated. 

One way to avoid the increases in regularization errors is to simply remove the 

direct mapping from orthography to phonology.  The single-route architecture does this 

by essentially combining the route from orthography to phonology with the route from 

orthography to semantics.  Kello and Plaut (2003) reported a simulation of the single-

route architecture to show that it could in fact provide a closer account of the observed 

errors in tempo-naming compared with the triangle model.  They also showed that the 

single-route architecture can account for the hallmark effects of printed frequency and 

spelling-sound regularity in word reading. 

 

Large-scale modeling and the problem of multisyllabic words 

We have now laid out the logical, empirical, and computational arguments in favor 

of a single-route architecture.  These arguments may not sway a proponent of dual-

route architectures, but they should at least provide justification for further pursuit.  The 

model presented by Kello and Plaut (2003) was a good start, but it was small (a corpus 

of 470 words) in comparison to the DRC and triangle models that have been reported.  

The precedent set by these models calls for a large-scale simulation of the single-route 

architecture.  The term “large-scale” currently refers to models that contain roughly 

between 3000 and 8000 words. 
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But if we fully embrace the notion that large-scale simulations provide strong tests 

of theories of lexical processing, then we must go beyond the extant models because 

they are restricted to processing monosyllabic words.  One might at first think that the 

inclusion of multisyllabic words is only a matter of scaling up the current models, but in 

fact we are forced to confront a fundamental issue that was heretofore marginalized: 

how does one represent variable-length sequences of letters or sounds?  Moreover how 

are such representations learned?  The problem here can be brought to the surface with 

the following two questions.  For the words SIGN, CONSIGN, SIGNING, and 

ASSIGNMENT, how do readers learn to represent the subset of letters S-I-G-N in a way 

that connects with the overlap in meaning among these words?  To complement, for the 

words INGRID and RIDING, how do readers learn to represent the letters I-N-G in a 

way that keeps the meanings of these words distinct?   

The extant models do not provide adequate answers because letters and sounds 

are represented in conjunction with their positions (not to mention the problem of 

representing semantics).  For instance the letters I-N-G might have one representation 

when they appear at the beginning of a word, and a second orthogonal representation 

when they appear at the end.  This conjunctive scheme would explain how different 

words are kept distinct, but it would not explain how words with similar meanings can be 

connected by having letter clusters in common.  One could instead represent I-N-G 

independent of its position (as in Wickelfeatures Seidenberg & McClelland, 1989) but 

then it becomes difficult to represent when I-N-G is and is not used as the suffix of a 

verb.  These questions illustrate how the representation of multisyllabic words poses a 

binding problem (Rosenblatt, 1961; von der Malsburg, 1981) in which letters or sounds 

must be bound to their positions in a word.  Information must be learned and 

represented about letters and sounds with respect to their positions, as well as 

independent of them.   

Despite their restriction to monosyllabic words, it is important to recognize the 

progress that has been made with the extant models.  There were and still are many 

theoretical questions for which the problem of multisyllabic words can be put off until a 

later date.  It also must be noted that there has been very little data on multisyllabic 

words to test the models against.  However, the recent development of the Elexicon 
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database has drastically changed the size of the playing field (Balota et al., 2002).  The 

database currently contains lexical decision and word naming data for over 30,000 

words of English, and most of these words are multisyllabic.  These data constitute a 

vast source of evidence for testing models of lexical processing, but they cannot fully be 

put to use until the problem of multisyllabic words is addressed.   

 

Learning representations of multisyllabic word forms 

The model to be presented is a first-pass effort to test a single-route architecture 

against the Elexicon database.  In this model, the problem of multisyllabic words was 

solved by drawing upon earlier modeling work by Plaut and Kello (1999).  They 

introduced a theory of phonological development in which the phonological 

representations of words are learned in the service of speech comprehension, 

production, and imitation.  The theory was supported by a connectionist model in which 

phonological representations were learned in the service of mediating the acoustic and 

articulatory forms of spoken words.  The mediation of these forms was carried out 

through three language tasks: 1) the integration of variable-length acoustic sequences 

into fixed-width representations, and the use of those fixed-width representations to 2) 

activate semantic knowledge and 3) generate variable-length sequences of articulatory 

outputs.   

The solution to multisyllabic words lies in this model’s ability to learn fixed-width 

representations of variable-length sequences.  Mono- and multisyllabic word forms vary 

widely in their numbers of letters and sounds.  By converting such variable-length 

sequences into fixed-width representations, a model can leverage the benefits of 

distributed representation and processing.  Such representations would provide a 

common basis for relating word forms of different lengths, and for generalizing to novel 

word forms of varying lengths.  Information about letters and sounds would be learned 

both within and across their positions in orthographic and phonological word forms. 

In more recent work, Kello and his colleagues (2004) showed how the modeling 

techniques used by Plaut and Kello (1999) can be generalized to learn fixed-width 

representations of variable-lengths sequences.  The basic innovation was to extend the 

simple recurrent network architecture (SRN; Elman, 1990; Jordan, 1986) to learn fixed-
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width representations in the dual service of both encoding and decoding variable-length 

sequences.  SRNs have been used most often in models of language processing to 

learn the transitional probabilities of sequences by training them to predict each 

subsequent element from previous elements.  While transitional probabilities can be 

used naturally as assays of grammatical learning (Christiansen, Allen, & Seidenberg, 

1998; Cleeremans, Servan-Schreiber, & McClelland, 1989), they do not translate 

directly into a method for learning fixed-width representations.  The problem is that the 

task of learning transitional probabilities requires the network to hold only enough 

information about a sequence in order to predict its next element.  Thus there is no 

pressure to encode or decode an entire sequence. 

The sequencer architecture creates the needed pressure by connecting an input 

SRN to an output SRN (see Figure 4; Kello et al., 2004).  The input SRN is trained to 

generate a fixed-width representation of a given sequence, and the output SRN is 

trained to regenerate that sequence from the fixed-width representation.  At the 

beginning of training, representations generated by the input SRN are mostly arbitrary, 

and the output SRN is pressured to reproduce the input sequences from these arbitrary 

representations.  As learning progresses, weight changes in the input SRN adapt the 

fixed-width representations to error signals that come from the output SRN.  At the 

same time, weight changes in the output SRN adapt to the fixed-width representations 

that are generated by the input SRN. 
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Figure 4.  The autosequencer architecture.  Inputs are presented sequentially to the input SRN, 

culminating in a fixed-width representation.  The fixed-width representation is then used by the output 

SRN as a plan to regenerate the input sequence as an output sequence. 

 

Simulations with small, artificial sets of sequences have shown that the sequencer 

is capable of learning to encode and decode variable-length sequences (Kello et al., 

2004).  Learning also generalized very well to novel sequences.  Analyses showed that 

elements of a sequence were represented semi-independent of their positions, and that 

the sequencer learned dependencies that were built into the training corpuses.  

Dependencies among sequence elements are important because they define the 

hierarchical structure of word forms.  For instance letter clusters are defined by co-

occurrences which are a kind of dependency, and they signify linguistic units such as 

graphemes, word bodies, and morphemes.   

Space limitations prohibit a more detailed discussion of the sequencer, but the brief 

overview given here is meant only to motivate the sequencer’s use in the model of 

lexical processing that is presented after considering one final piece of the puzzle: 

semantic representations.  

 

Semantic junctions? 

The sequencer architecture is a computational means of exploring the basic 

hypothesis that representations are formed at the junctions of perception and action.  It 

is easy to see how the phonological and orthographic representations of words might lie 

at such junctions: language tasks require one to integrate over the sequences of sounds 

and letters that comprise perceived words, and generate the sequences of articulations 

and hand movements (typed or written) that produce words.  It is an added benefit that 

the problem of multisyllabic words is solved by the sequencer’s ability to integrate and 

generate over variable-length sequences. 

But what about the semantic representations of words?  Can they also be learned 

as junctions of perception and action?  Consider how the semantic aspects of a word 

like BALL are grounded in our bodily experiences with balls.  It is plausible to 

hypothesize that at some level of abstraction, our perceptual representations of balls 

have structure that is systematically related to our action representations of balls.  For 
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instance the roundness of a ball captures something about how balls are perceived, as 

well as how they are acted upon (bounced, thrown, etc.).  A junction representation of 

semantics would cover the common ground between perception and action that exists 

for any given concept denoted by a word.  The idea that the semantics of words is 

grounded in perception/action junctions has much in common with Gibson’s affordances 

(Gibson, 1979).  If one goes on to say that even abstract concepts are grounded in 

bodily experience, then the idea also has much in common with Lakoff and Johnson’s 

conceptual metaphors (Lakoff & Johnson, 1980), and the recent movement towards 

embodied cognition (Wilson, 2002). 

As appealing as the idea may sound, there are many questions that remain to be 

answered.  What would the sequences of perceptual inputs and action outputs consist 

of?  How would one handle polysemy and the contextual flexibility of meaning?  Could 

this embodied idea cover even the most abstract aspects of semantics?  And so on.  In 

the upcoming model, these questions are set aside by using semantic representations 

built from co-occurrence statistics as proxies for junction representations. 

 

Putting it all together: A large-scale pilot of the junction model 

We now have the motivation and means of implementing a large-scale, single-route 

model of lexical processing.  A pilot model is presented here as a proof-of-concept.  The 

model was built from a corpus of 45,273 words of English, and tested against response 

times for over 30,000 of those words.  The simulated response times were compared 

against response times in the Elexicon database (Balota et al., 2002).  The proportions 

of explained variance are benchmarked against regression models with word frequency, 

length, and articulatory factors as the predictors.  Results from the pilot model are also 

benchmarked against results from the PMSP simulations (Plaut et al., 1996) and the 

dual-route cascaded (DRC) model of word recognition (Coltheart et al., 2001).  The 

chapter closes with a discussion of how the pilot model can be improved and extended 

to more fully address the range of phenomena relevant to lexical processing. 

Model Architecture.  The basic architecture, shown in Figure 5, is essentially the 

same as the single-route architecture that was first shown in Figure 2.  The 

orthographic, phonological, and semantic representations were first constructed 
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separate from each other, and then bound by a set of mediating representations.  The 

pilot model was constructed piecemeal in order to simplify matters.  The theory actually 

calls for spoken language acquisition to be simulated as the learning and binding of 

phonological and semantic representations.  Then the learning of orthographic 

representations would be gradually integrated with the spoken language system.  For 

the sake of simplicity, this developmental side to the model was not implemented here, 

but is planned for future simulations. 
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Codes 

Semantic 
Codes 

 
Figure 5.  Basic architecture of the large-scale junction model. 

 

Orthographic and phonological representations.  One orthographic and one 

phonological representation was generated for each of the 45,263 words.  These 

representations were learned using two pairs of sequencer models.  The orthography 

pair learned to encode and decode sequences of capital letters that comprised English 

words.  The phonology pair learned to encode and decode sequences of phonemes.  

Each letter was coded by a pattern of ten binary features such as “has a left vertical 

line”, and “has a curve”.  Each phoneme was coded by ten phonetic features such as 

frication and voicing, plus two additional features to code for lexical stress on vowels.   

The pairs were used to create two hierarchical models of two stages each.  Two 

stage-one sequencers learned to encode and decode sequences of letters or 

phonemes into vowel groups that roughly corresponded to syllables.  Two stage-two 
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sequencers learned to encode and decode sequences of vowel groups into words, 

using 400 hidden units for the fixed-width representations.  This two-stage method was 

used to make explicit the syllabic structure of English words, and to reduce the number 

of elements that any one sequencer model was required to encode.  The two-stage 

method was a simplification that helped make progress towards the larger effort of 

building a large-scale model of lexical processing.  In more recent sequencer work, the 

orthographic and phonological representations of words were learned in a single stage, 

directly from the letters or phonemes (Kello, Sibley, Plaut, & Elman, in preparation). 

Each pair of sequencers was trained to encode 45,263 words of English.  The 

corpus was the intersection of the CMU pronunciation dictionary, the COALS database 

of word co-occurrences (Rohde, Gonnerman, & Plaut, in preparation), and the Microsoft 

spelling dictionary.  The weights were learned via an extension of the back-propagation 

algorithm that was tailored to the sequencer architecture (for details see Kello et al., 

2004).  The stage-one sequencers were first trained to criterion, and then the learned 

vowel group representations served as the inputs and outputs of the stage-two 

sequencers.  The fixed-width representations at both stages were pressured to be 

binary as learning progressed, and then forced to be binary at the end of learning.  

Binary representations were useful when the full model was put together (see below). 

At the end of training, the autosequencers were able to correctly encode and 

decode over 99% of the trained words.  Two 400-bit codes were learned for each word, 

one orthographic code and one phonological code.  The similarity structure of these 

codes is crudely illustrated in Figure 6.  Six example words are listed along with their 

closest neighbors, three for orthography and three for phonology.  Neighbors are listed 

in order of similarity as measured by the number of bits in common with each example 

word.  The neighbors illustrate how similarity of the orthographic and phonological 

codes was driven by the overlap in letters or phonemes, semi-independent of their 

position. 
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Deterministic

determination
determinate
determining,
determinative
determinations,
determinable
determinedly
determinism,
determines
determined
determinants
determine
paternalistic
determinist
determinant
mechanistic
hedonistic
pessimistic,
opportunistic

Jumping

jumped
jumpers
jumper
bumping
jumpy
ramping
slumping
lumping
tamping
thumping
pumping,
camping
stumping,
scrimping,
jumbo
dumping
stomping
lamping

Lice

lace
vice
malice
device
nice
sluice
police,
face
dice
rice,
mice
slice
licorice
loci
solace,
pace,
mace
vide

Institutionalization

institutionalizes
institutionalizing
institutionalize
internationalization
institutionalized
institutionally
constitutionality
institutional
counterrevolutionary
internationalism
unconstitutionally
internationalized
antidiscrimination
extraterritoriality
industrialization
denationalization
constitutional
constitutionally
interdisciplinary
recapitalization

Hat

sat
haut
hath
seat
set
height
head
heat
half
shad
sec
heath
haute
site
sight
shit
sheet
had
cite

Board

bored
born
borne
bourn
brought
bard
barred
bared
gored
gourd
mort
barn
guard
marred
morgue
bread
bred
chord
cord

Orthography Phonology 
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Figure 6.  A simple illustration of the similarity structure in the learned junction representations for 

orthography (left three columns) and phonology (right three columns).  For each of six target  

words, the orthographic or phonological neighbors are listed from most similar to less similar. 

 

Unlike trained words, the two-stage models were poor at encoding and decoding 

nonwords.  When tested on a corpus of over 20,000 legal nonwords, performance was 

less than 30% correct for both orthography and phonology.  The lack of nonword 

encoding meant that these sequencers could not be used to test nonword processing in 

the junction model.  But more recently, orthographic and phonological sequencers have 

been trained that correctly generalized to over 85% of over 60,000 legal nonwords 

(Kello et al., in preparation).  The success of the more recent sequencers shows that 

the lack of nonword processing in the pilot model was only an implementational 

shortcoming, not a theoretical one. 

Semantic Representations.  One semantic representation was generated for each 

of the 45,273 words.   Each representation was a 400-bit pattern derived from the 

COALS method of compiling co-occurrence statistics for words in texts (Rohde et al., in 

preparation).  The method is similar to latent semantic analysis (Landauer & Dumais, 

1997), and the statistics were culled from numerous and various text sources on the 

internet.  As noted earlier, the statistical extraction of co-occurrence statistics was a 

proxy for what would ideally be implemented as semantic junctions. 
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Mediating lexical nodes.  This part of the pilot model may lead to some confusion 

and controversy without careful explanation.  The defining aspect of the single-route 

architecture is that orthographic, phonological, and semantic codes are mediated by a 

single level of representation.  In precursors to the junction model (Kello, 2003; Kello & 

Plaut, 2003), this mediating level of representation was learned by back-propagating 

error that was incurred in mapping among the three types of codes. 

Back-propagation is a versatile learning algorithm, but it has certain biases and 

limitations.  One of its biases is that systematic mappings are learned more easily 

(fewer training epochs and/or hidden units) than unsystematic mappings.  This bias 

works in favor of learning the mapping between orthography and phonology, but not 

between semantics and either orthography or phonology.  All of these mappings must 

be supported by the mediating level of representation.  In the precursor models, the bias 

was overcome by using a sufficient number of hidden units, and training for a sufficient 

number of epochs.  But the corpus of words that was learned in those models was 

relatively small at 470 words.  Using back-propagation to learn the mediating 

representations for over 45,000 words would take a prohibitive amount of time and 

computing power. 

The alternative used in the current pilot model was to create lexical nodes and 

assign each one to represent one word in the corpus.  Lexical nodes have no inherent 

bias in computing systematic versus unsystematic mappings.  Because they can be pre-

specified, no training is required in order to use them.  Theoretically speaking, the use 

of lexical nodes in the pilot model makes it clear that the mediating level of 

representation in the single-route architecture is a lexicon of sorts.  This point is true 

regardless of whether the mediating level is comprised of lexical nodes or more 

distributed representations.   

But in using lexical nodes do we forfeit the benefits of learning and generalization 

that are conferred by distributed representations?  The short answer is no.  The lexical 

nodes used in the pilot model were “hand-wired” for the sake of simplicity, but there are 

established algorithms that can be used to learn localist codes, such as the one 

developed by Grossberg in adaptive resonance theory (Grossberg, 1980).  It is very 

reasonable to think that one of these algorithms could be applied towards learning the 
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mediating representations in a single-route architecture.  As for generalization, Kello et 

al. (in press) showed how localist and distributed levels of representation can be quite 

similar in how they process novel input patterns.  The basic insight is that the activation 

of localist nodes can be graded as a function of similarity between a given input pattern 

and the pattern that is stored at each node.  In this case, a novel input pattern will 

activate a lexical node to the extent it is similar to the pattern stored at that node.  

Patterns are stored as weight vectors on the incoming connections to nodes.  

In summary, lexical nodes were used to compute the systematic and unsystematic 

mappings among phonological, orthographic, and semantic codes.  These nodes were 

pre-specified as a matter of simplicity, and both known and novel inputs were processed 

as patterns of activation across the lexical nodes. 

Connectivity and processing.  Each localist node was bi-directionally connected to 

each of 1200 sigmoidal processing units, one unit per bit of orthography (400), 

phonology (400), and semantics (400).  The activation of each localist node was 

computed by the normalized exponential function, 
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This function caused the nodes to compete for activation, with oj being an exponential 

function of support for word j.  Support was summed from two sources, with the strength 

of each one scaled by the free parameters 
β

 and γ .  One source was activation of the 

distributed units, and the other was activation of the neighboring words.  Support from 

distributed units was given by  

∑=
i

ijij awI ,               (2) 

where wji was the connection weight from distributed unit i to localist node j, and ai was 

the activation of distributed unit i.  Each wij was set equal to +1 or –1 in accordance with 

the sign of bit i in the pattern for word j.  This type of connectivity meant that support 

increased as the correlation increased between the pattern of activation over the 

distributed units, and the incoming weight vector.   

Support from neighboring words was given by a novel, Hebbian-like input, 
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∑=
n

njj ooL ,              (3) 

where the on were activations of all the neighbors of word j.  Neighbors of word j were 

all other words that shared at least 280 out of 400 bits in their the orthographic, 

phonological, or semantic patterns.  This neighborhood support was “self-scaled” (i.e., 

scaled by oj) to ensure that support was maximal when activations were evenly 

distributed in a neighborhood, and minimal when either oj or the sum of neighbor 

activations went to zero.  Neighborhood support provided cooperative interactions 

among words, and the balance of cooperation and competition was controlled by the 

ratio of 
β

 to γ . 

The activation of each distributed unit was computed as a sigmoid bounded by (–

1,+1), 

( )iii EIa τα += tanh .           (4) 

There were two sources of net input into the distributed units, scaled by the free 

parameters α  and τ .  One source came from activations of the localist nodes,  

∑=
j

jiji owI ,                 (5) 

where wij was the connection weight from localist unit j to distributed unit i, and oj was 

the activation of localist node j.  Each wij was set equal to +fij or –fij, where fij was the log 

frequency of occurrence of word j in the COALS database, and its sign was set in 

accordance with the sign of bit i in the pattern for word j.  Given that the oj were 

normalized to one, each Ii was an average of the wij, weighted by the oj.   

The other source of input into the distributed units, Ei, was external to the model.  It 

came from environmental inputs such letters seen or sounds heard.  In the current 

simulations, the only external input was orthographic, in order to simulate the standard 

tasks of word naming or lexical decision.  The Ei were set to –1 or +1 in accordance with 

the orthographic bit pattern of a given input word.  The influence of internal and external 

inputs to the distributed units was balanced by the α  and τ  free parameters, respectively. 

Unit and node activations were computed in discrete time.  The distributed units 

were used to index the model’s response to an orthographic input.  The model’s 

readiness to respond was measured by the degree to which unit activations were near 
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their asymptotes.  This response measure was implemented by the response probability 

function 

])[()( 2t
jaEtp = ,        (6) 

where the probability of a response at time step t was equal to the mean square 

activation value across all phonological units.  The phonological units constituted a 

generic response measure that could be used to simulate both naming response times 

and lexical decision response times.  These tasks differ in important ways, but this 

simplified response measure was adequate for the pilot model. 

The probability of a response over time is illustrated in Figure 7 for three example 

word inputs.  The probability response function given by equation (6) allowed for these 

response distributions to be calculated after only a single presentation of each word to 

the model.  The graphs show that response distributions for individual items are 

positively skewed, and that items with faster response times also have less variation in 

their response times.  These distributional characteristics were a natural consequence 

of the model architecture, and they are consistent with the distributional characteristics 

of real response times to words. 
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Figure 7. Probability density functions of the model response times for three individual words,  

with means and standard deviations shown. 

 

Tests against the Elexicon database 

The model’s free parameters were fit against the mean naming response times for 

30,894 words that were collected as part of the Elexicon database (Balota et al., 2002).  

This set comprised the full intersection of the model’s lexicon with the data available in 

the Elexicon database at the time of simulation.  Model performance was mostly the 
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same for a wide range of parameter values, indicating that model fit was not crucially 

dependent on any particular set of values. 

It is well-known that the articulatory characteristics of a naming response have a 

large effect on naming response times (Kessler, Treiman, & Mullennix, 2002; Rastle & 

Davis, 2002).  It is also well-known that the length of a word has large effects on naming 

response times and lexical decision response times (Balota, Cortese, Sergent-Marshall, 

Spieler, & Yap, 2004).  The current model cannot be held accountable for these effects 

because it does not have a mouth or eyes.  Therefore, the effect of articulatory 

characteristics of the initial phoneme was partialed out of the Elexicon mean naming 

response times, and the effect of length was partialed out of the Elexicon mean naming 

and lexical decision response times.  The following analyses were conducted on the 

resulting response time residuals. 

The histogram of normalized model response times is graphed in Figure 6, along 

with the normalized response time residuals for word naming and lexical decision data 

from the Elexicon database.  The graph shows a close fit between the simulated and 

empirical distributions, particularly with respect to positive skew.  It is important to note 

that there were no parameters to directly control the shape of the model response time 

distribution.  Moreover, the parameter values were not adjusted with respect to the 

response time distribution; they were instead adjusted to maximize the variance in 

naming response times explained by the model (see next).  Thus, the fit seen in Figure 

8 is in large part due to the theoretical principles built into the model representations 

and architecture. 
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Figure 8.  Normalized histograms of mean response times for the model, and for mean response time 

residuals from the naming data and lexical decision data in the Elexicon database. 
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In Figure 9, the model response times are compared against the Elexicon response 

times for naming.  The model accounted for 18.4% of the variance in naming residuals, 

and the parameter values were adjusted to maximize this percentage.  By comparison, 

log frequency accounted for 16.6% of the variance when it was regressed against the 

response time residuals.  To determine why the model accounted for this additional 

variance, log frequency was partialed out of both the model response times and the 

response time residuals: the model still accounted for 2.6% of the remaining variance.  

This 2.6% was solely attributable to the competitive and cooperative interactions among 

words. 

 
Figure 9.  Model mean response times plotted against the naming response time residuals from the 

Elexicon database, in normalized coordinates. 

 

In Figure 10, the model response times are plotted against the Elexicon response 

time residuals for lexical decision, in normalized coordinates.  The model accounted for 

24.7% of the variance in response time residuals, even though the parameter values 

were not adjusted with respect to these residuals.  Log frequency accounted for about 

the same amount of variance (24.8%).  When frequency was removed from the model 

and from the residuals, the model still accounted for 2.4% of the remaining variance.  As 

with naming response times, this 2.4% was solely attributable to the competitive and 

cooperative interactions among words. 
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Figure 10.  Model mean response times plotted against the lexical decision response time residuals from 

the Elexicon database, in normalized coordinates. 

 

In addition to mean response times for each item, the Elexicon database provides 

the standard deviations of response times.  As shown in Figure 5, the model naturally 

predicts both the means and standard deviations of item response times.  The model’s 

predictions were tested against the database.  The model accounted for 7.8% of the 

item variance in standard deviations for naming, and 5.2% for lexical decision.  By 

comparison, log frequency accounted for 8.2% and 5.9%, respectively.  The slightly 

higher percentages for log frequency mean that the model’s ability to account for item 

standard deviations was primarily due to the way that word frequency had its effect on 

processing. 

 

Comparisons with PMSP and DRC models 

The large-scale junction model was also compared against the two currently 

dominant models of lexical processing, the triangle (Plaut et al., 1996) and DRC 

(Coltheart et al., 2001) models of lexical processing.  The PMSP and DRC response 

times were subjected to the same analyses as the junction model response times, and 

comparisons are shown in Table 1.  The junction model clearly outperformed the other 

two models.  The DRC comparison is fair because both models are engineered, and the 

DRC model has 31 free parameters, which is 26 more than the junction model.  The 
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PMSP comparison is less fair because the mappings between orthography, phonology, 

and semantics were learned in the PMSP model, but not in the junction model.   

 

DRC comparison   PMSP comparisons 

 N = 5190   N = 2808 

 Junction DRC  Junction Sim 1 Sim 2 Sim 3 Sim 4 

R2 12.2% 5.1%  14.7% 5.2% 4.1% 2.1% 11.9% 

 

Table 1.  Proportions of variance in naming response times accounted for by the junction model, 

compared with the DRC and PMSP models 

 

It should be remembered that performance of the junction model is largely due to 

the transparent way in which word frequency is implemented.  This transparency comes 

from the model’s simplicity.  The long-term aim is to retain this core simplicity as 

learning and other extensions are incorporated into the model. 

  

General discussion 

It is time to revisit the questions that started off the chapter.  First, should we accept 

the premise that skilled word reading is supported by lexical and sublexical pathways of 

processing?  As it stands the junction model is computational evidence that we should 

not accept this premise, at least not without more distinguishing evidence.  It is 

understandable that the evidence may not yet exist, if only because researchers did not 

have a viable single-route alternative to test.  The pilot model presented here represents 

a significant step towards such an alternative. 

Second, how can we model the learning of orthographic and phonological 

representations for multisyllabic words?  The sequencer architecture provides a way, 

and in doing so, it opens the door to very large-scale models of lexical processing that 

simulate performance for both mono- and multisyllabic items. The perennial need for 

such models was heightened when Spieler and Balota (1997) made the well-taken point 

that item-level performance is an important source of evidence for theories of lexical 

processing.  The authors showed that the PMSP and DRC models accounted for little 

variance in performance measures for monosyllabic items, not to mention the fact that 
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they do not simulate performance on multisyllabic items.  Balota and his colleagues 

then upped the ante by providing performance measures for over 30,000 words in the 

Elexicon database.   

The pilot model presented here represents a significant step towards a very large-

scale model of lexical processing.  The results were encouraging, but challenges always 

remain.  Most immediately, the new sequencer models need to be integrated into the 

junction model so that both word and nonword data can be addressed.  Also it would be 

informative if the similarity structure of sequencer representations could be examined in 

more detail, and tested empirically.  The list of word similarities shown in Figure 6 has 

face validity, but this list is a crude means of viewing the similarity structure, and it is not 

clear how well the judgments or performance of language users would match up. 

If further examination of the sequencer architecture ends up proving its usefulness, 

the next step will be to conduct more in-depth tests and analyses of the junction model.  

For instance there are a number hallmark findings from word naming and lexical 

decision experiments that the model would need to be tested against.  It would also be 

important to extend the model to address findings from various kinds of priming and 

blocking experiments.  Ultimately the model would need to be extended even further to 

address the data on impairments and lexical acquisition. 

These tasks are daunting but doable.  The pilot model has already shown that 

lexical decision and word naming data can be simulated, at least in principle.  Previous 

work on simulation of priming in connectionist models, both weight-based and 

activation-based [ref], could be incorporated into the junction model.  With regard to 

impairments, performance errors may be generated from noise or damage to units or 

connections, as in all connectionist models.  They may also come from aberrant settings 

chosen on the basis of specific hypotheses about control parameters of the lexical 

system.  For instance competition among the localist nodes could be increased by 

increasing the 
β

 parameter, which is equivalent to the input gain parameter in the 

localist simulations reported by Kello et al. (in press).  Those simulations effectively 

proved that high levels of input gain will cause the large-scale model to exhibit a 

selective impairment in nonword reading, akin to phonological dyslexia.  Low levels of 

input gain should cause a selective impairment in exception word reading. 
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With regard to acquisition, the localist nodes would need to be formed, and their 

weight vectors learned, in coordination with the learning of junction representations.  

This coordination could be implemented by running two learning algorithms that interact 

with each other.  For instance, back-propagation in the autosequencer could be used to 

learn junction representations, and the developing junctions could be fed as inputs to a 

localist learning algorithm (Grossberg, 1980).  In turn, the localist nodes could bias the 

mapping that is learned by the autosequencer.  All of these ideas are specific enough to 

be implemented and tested against empirical data. 

 

Of principles, constructs, and models   

All computational models of language and cognition may be approached from 

multiple points of view.  Broadly speaking, the principle of junctions is way of thinking 

about cognitive representations that emerge from the demands of perception and 

action.  The principle of junctions is made more tangible by theoretical constructs such 

as distributed coding and pattern formation in the confluence of competitive and 

cooperative interactions.  These constructs come from the connectionist and complex 

systems frameworks, which carry with them formalisms for computational modeling.   

Computational models provide tests of the constructs and principles, but they also 

serve as a wellspring for new ideas.  For instance it was the computational work with 

input gain that led to the idea that junction representations could be mediated by localist 

nodes, and still provide a basis for explaining nonword generalization and acquired 

dyslexias.  And it was work on the sequencer architecture that allowed us to make some 

headway on the problem of multisyllabic words.  The interplay of principles, constructs 

and models is likely to continue to drive progress on the junction model.  
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