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1. Competing Constraints on Language Use

Languages are constrained by the physical, perceptual, and cognitive properties of human communi-
cation systems. For instance, there are upper bounds on the amount of time available for communica-
tion. These bounds constrain the lengths of phonological and orthographic codes so that communica-
tion can proceed apace. There are also constraints on the amount of linguistic information that can be
condensed into a given span of perception or production (Liberman, 1967). These constraints place
lower bounds on the amounts of speech activity needed for phonological and orthographic codes.

Constraints on languages often work in opposition to one another, perhaps the most famously pro-
posed example being Zipf’s principle of least effort (Zipf, 1949). On the one hand, memory con-
straints produce a tendency towards using fewer numbers of words to reduce memory effort needed
to store and access them. A vocabulary that requires minimal memory effort on the part of the
speaker is one that uses a single word for all purposes. On the other hand, ambiguity constraints pro-
duce a tendency towards using larger numbers of words to reduce the number of meanings per word,
and thereby reduce effort needed to disambiguate word meanings. A vocabulary that requires mini-
mal disambiguation effort on the part of the listener is one that uses a different word for every dis-
tinct concept. The principle of least effort states that natural languages are constrained to minimize
both speakers’ and listeners’ efforts, and only by balancing them can effective communication be
achieved.

It is generally accepted that language usage must strike a balance between these two kinds of ef-
fort. However, Zipf controversially claimed that the principle of least effort is responsible for a par-
ticular kind of scaling law (also known as a power law) that appears to be true of word usage
throughout the world. The scaling law states that the probability of using a given word W in language
L is approximately inversely proportional to its frequency rank,

whereα≈–1. For instance the highest ranked word in English (THE) is about twice as likely to occur
as the second highest ranked word (OF), which is about twice as likely as the fourth highest, and so
on.

This scaling law in the distribution of word frequencies means that a few words are used very of-
ten and most words are used rarely. This dichotomy creates a combination (balance) of high fre-
quency words requiring little memory effort (because they are general-purpose words used often in
many different contexts), and low frequency words requiring little disambiguation effort (because
they are specialized words with particular meanings and contexts). The connection between word
frequency and word meaning is evident, for instance, in the fact that closed-class words tend to be the
most frequent of their language, and also appear in the most general contexts (e.g., the English word
THE may be followed by virtually any noun, adjective, or adverb, albeit some words follow more
frequently than others). Rare words are often from highly specialized domains and therefore appear in
very particular contexts (e.g., terms specific to a given profession).
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Zipf’s law transparently corresponds to a continuous balance across the frequency range, from
minimizing memory effort in the few frequent, context-general words, to minimizing disambiguation
effort in the many rare, context-specific words (see Morton, 1969). This balance is present at all
measureable scales because the function between word frequency and frequency rank is the same
regardless of the scale at which these variables are measured (i.e., the relation is invariant over multi-
plication by a common factor).

The idea that Zipf’s principle of least effort leads to this scaling law makes some intuitive sense,
but Zipf never gave a rigorous proof of it. More problematically, other candidate hypotheses came to
light that appeared to provide simpler explanations. Mandelbrot (1953), Miller (1957), and Li (1992)
each showed that scaling law frequency distributions could be obtained from texts composed of ran-
dom letter strings. Their proofs have led many researchers to discount such distributions as inevitable
and therefore trivial facts of language use.

However, others have pointed out that corpora composed of random strings have important differ-
ences with natural language corpora (Tsonis, Schultz, & Tsonis, 1997). For instance, the most fre-
quent random strings are necessarily those of middling length, whereas in natural languages these
tend to be the shorter words. Random strings also cannot speak to the relationship between word fre-
quency and word meaning. More generally, random strings do not have the capacity for structure that
is requisite of real wordforms. Thus it appears that random strings exhibit scaling laws because string
frequency has a particular relationship with string length, but this relationship is not what creates
scaling laws in real word frequencies.

1.1. Criticality in Language Use

Spurred by the inadequacies of random string accounts, Ferrer i Cancho and Solé (2003) conducted
an information theoretic analysis to investigate Zipf’s hypothesized connection between the principle
of least effort and scaling law frequency distributions. The authors showed that, under fairly general
assumptions, the balance of memory effort and disambiguation effort can be shown to produce a scal-
ing law in the frequency distribution of word usage. Their analysis was motivated by theories of criti-
cal phenomena that were developed in the area of physics known as statistical mechanics (Huang,
1963; Ma, 1976).

The aim of statistical mechanics is to describe the probabilistic, ensemble (global) states of sys-
tems with many interacting components. Ferrer i Cancho and Solé (2003) modeled communication
systems by treating language users as system components and word usage as the result of component
interactions. From this perspective, ensemble states correspond to distributions of word usage, and
the authors focused on two kinds of distributions that often constitute opposing phases of a system’s
behavior. One phase is characterized by high entropy in that systems may exhibit different behaviors
with roughly equal probability (i.e., a flat probability distribution). The other is characterized by low
entropy in that some behaviors may occur more often than others (i.e., a peaked probability distribu-
tion).

In this framework, the high entropy phase corresponds to minimizing disambiguation effort in that
many different words are used in order to distinguish among many different meanings (i.e., a rela-
tively flat probability distribution of word usage). The low entropy phase corresponds to minimizing
memory effort in that only one or a few words are used for most meanings (i.e., a relatively peaked
probability distribution of word usage). As explained earlier, an effective communication system is
one that strikes a balance between these two opposing phases.

Theory from statistical mechanics is useful here because it has been shown that, when complex
systems transition between phases of low and high entropy, the transition often occurs abruptly rather
than gradually (Ma, 1976). In thermodynamic terms, low memory effort and low disambiguation ef-
fort may be two opposing phases of the communication system that have a sharp phase transition
between them. Systems poised near phase transitions are said to be in critical states, and critical
states are known to universally exhibit scaling laws in their behaviors, including scaling law distribu-
tions like Zipf’s law (Bak & Paczuski, 1995).



Thus evidence of Zipf’s law suggests that communication systems tend to be poised near critical
states between phases of low memory effort and low disambiguation effort. To investigate this hy-
pothesis, Ferrer i Cancho and Solé (2003) built a very simple, information theoretic model of a com-
munication system, and they optimized the model according to two opposing objectives: To minimize
the entropy of word usage on the one hand (minimize memory effort), while also minimizing the en-
tropy of meanings per word on the other hand (minimize disambiguation effort). These entropies are
opposed to one another and the model contained a parameter that governed their proportional influ-
ence on communication.

Model results revealed a sharp transition between the phases of low memory effort and low dis-
ambiguation effort. Moreover, Zipf’s law was obtained when communication was poised near this
phase transition. These simulation results provide a theoretically grounded explanation of Zipf’s law,
but one might question whether the authors have built a bridge too far: why would theories of critical
phenomena developed for physical systems apply to systems of human communication? The answer
is that systems in critical states exhibit general principles of behavior that hold true regardless of the
particular kinds of components that comprise the system, a phenomenon known as universality in
theoretical physics (Sornette, 2004). Thus interacting atoms or interacting words or interacting people
may all share certain principles of emergent behavior in common.

2. Competing Constraints on Wordform Lexicons

If principles of criticality are general to language systems, then scaling laws analogous to Zipf’s law
should be found in language systems wherever there is a phase transition between low and high en-
tropy. In the present study, we adopt and adapt Ferrer i Cancho and Solé’s (2003) information theo-
retic analysis to investigate an analogously hypothesized phase transition in language systems.

The language domain that we focus on is wordform lexicons. For the sake of simplicity let us rep-
resent wordforms as linear strings of phonemes or letters. The appearances of words in speech or text
can be coarsely represented as such strings, in which case wordform lexicons consist of all strings
that appear as wordforms in a given language (token information about individual appearances is
discarded). Language users must know their wordform lexicons to communicate, and thus communi-
cation constraints should apply to lexicon structure, just as they apply to word usage (the latter being
defined in terms of token information instead of lexicon structure). We investigated two competing
constraints on lexicon structure that are analogous to the ambiguity and memorability constraints
hypothesized for Zipf’s law, namely, distinctiveness and efficiency constraints.

On the one hand, the mutual distinctiveness of wordforms in a lexicon should be maximal in order
to minimize the chance of confusing them with each other during communication. We consider word-
forms as distinctive to the extent that they consist of substrings unique to them. For instance, the Eng-
lish orthographic wordform YACHT is distinctive because substrings like YACH, ACHT, YAC, and
CHT are not themselves English wordforms (note that substrings are position-independent). By con-
trast, the wordform FAIRED is less distinctive because FAIR, AIR, AIRED, IRE, and RED are all
wordforms themselves. A maximally distinctive lexicon is one that uses the most unique substrings
possible, which minimizes the amount of substring overlap among wordforms.

On the other hand, the efficiency of lexicon structure should be maximal in order to minimize the
resources needed to represent them. In terms of substrings, a maximally efficient lexicon is one that
uses the fewest substrings necessary to distinguish among all wordforms. This means that substrings
are reused across wordforms as much as possible. If one allows homophones or homographs to occur
without limit (i.e., using the same wordforms to represent multiple word meanings, as in
/mit/→MEAT or MEET for homophones, and WIND→/wɪnd/ or /wɑɪnd/ for homographs), then a
maximally, overly efficient lexicon would use only one string to code all words.

We define these competing constraints in terms of all substrings (i.e., wordforms of all sizes) be-
cause there does not appear to be any privileged scale of substring analysis. One can see this in the
fact that, collectively speaking, languages of the world use all scales of substrings to express their
phonological, orthographic, and morphological structures. In English, for instance, some inflectional



morphemes are expressed as single letters (e.g., -s for pluralization), whereas others conveying whole
word meanings are expressed by strings as large as the wordforms themselves. Between these ex-
tremes one can find morphological structures expressed as substrings at any given scale, in any given
position.

Because distinctiveness and efficiency constraints are defined over all substrings, an analysis of
any given language will include substrings that are not linguistically relevant to the wordforms con-
taining them. For instance, the wordform RED does not correspond to a linguistic unit in the word-
form FAIRED, yet it is included below in our analysis of an English orthographic wordform lexicon.
Conversely, substrings will not capture all possible morphological structures (e.g., infixes in lan-
guages like Hebrew). One-to-one correspondence between substrings and linguistic structures is not
necessary for our analysis because substrings are not meant to capture all the factors that might help
to shape a wordform lexicon; this would not be feasible. Substrings are only meant to capture one
facet of the hypothesized balancing act between distinctiveness and efficiency, albeit a salient one.

The face validity of our analysis can be seen in the functional importance of balancing distinctive-
ness and efficiency: If distinctiveness is over-emphasized, then structure will not be sufficiently
shared across wordforms. If efficiency is over-emphasized, then structure is not sufficiently heteroge-
neous across wordforms. Our research question is whether the need to balance these competing con-
straints poises wordform lexicons near a phase transition between states of low and high entropy. If
so, then a scaling law is predicted to occur in the distributions of substrings that comprise wordform
lexicons.

2.1. Scale-Free Wordform Networks

We explain how a scaling law is predicted in the next section, but it is helpful to first point out that
our prediction corresponds to what is commonly referred to as a scale-free network. To illustrate by
contrast, note how the word frequency distributions following Zipf’s law do not have any explicit
connections among the words. This is because only frequency counts are relevant to Zipf’s law. Sub-
string frequency distributions are different because substring counts are related to the substring struc-
ture of wordform lexicons.

For instance, each substring count for the English wordform RED corresponds to its connection
with another English wordform (RED is a substring of FAIRED, REDUCE, PREDICT, and so on).
These connections form a structure that can be formalized as network (i.e., directed graph) for which
each node is a different wordform, and one node is linked to another whenever the former is a sub-
string of the latter. A small piece of the network created from an English wordform lexicon is dia-
grammed in Fig 1.

The inclusion of all substring relations among wordforms creates a densely interconnected net-
work with a tree-like branching structure from shortest to longest wordforms. The shortest wordforms

AIR

FAIR

FAIRED

AIRED

RED

CARED

SCARED

Fig 1. Piece of English Orthographic Wordform Network



serve as the tree trunks; they have no incoming links because no wordforms are contained within
them. The longest and most unique wordforms are at the branch tips; they have no outgoing links
because they are not substrings of other wordforms. The progression from trunks to tips is highly
correlated with wordform length, but not strictly tied to it: Some longer but common substrings are
more trunk-like than shorter but unusual substrings (e.g., SING is more root-like than YO).

This wordform network is relevant to our research question because the links are directly related
to the distinctiveness and efficiency of the wordform lexicon. In particular, distinctiveness increases
as the number of incoming links decreases, and efficiency increases as the number of outgoing links
increases. Thus wordform networks serve as tools for conceptualizing and analyzing the hypothesized
distinctiveness and efficiency constraints on lexicon structure.

In terms of the network formalism, our predicted scaling law can be found in the counts (i.e., de-
grees) of outgoing links per node (i.e., the number of times that a given wordform appears as a sub-
string of another wordform in the lexicon). Rather than use the frequency rank distribution as for
Zipf’s law, network link distributions are often expressed in terms of the cumulative probability dis-
tribution: The probability of choosing a wordform node at random whose number of outgoing links is
≥k is predicted to be

where γ ≈–1 is typically referred to as a scale-free network. The cumulative probability distribution
is a popular means of expressing scale-free networks, in part because exponents can be more directly
and reliably estimated from it (see Kirby, 2001).

Casting our predicted scaling law as a scale-free network is also potentially useful because scale-
free networks have attracted a great deal of attention in recent years throughout the sciences. Many
systems in nature and society can be represented as networks, and it turns out that such networks are
often scale-free. For instance, scale-free network structures have been found in computer networks
(Barabasi, Albert, & Jeong, 2000; Albert, Hawoong, & Barabasi, 1999), business networks
(Wasserman & Faust, 1994), social networks (Barabasi, Jeong, Neda, Ravasz, Schubert, & Vicsek,
2002), and biological networks of various kinds (Jeong, Tombor, Albert, Oltvai, & Barabasi, 2000;
Sole, 2001).

In the context of language, Steyvers and Tenenbaum (2005) found that semantic networks of
words have scale-free structures when constructed using either behavioral or encyclopedic methods.
They built one semantic network from word association data by linking any two word nodes for
which one was given as an associate of the other (e.g., a participant might associate the word NURSE
with DOCTOR). Two other networks were similarly built using encyclopedic methods, one based on
a thesaurus and the other on an on-line encyclopedia. All three methods yielded semantic networks
whose link distributions obeyed a scaling law.

Semantic networks have the connotation of spreading activation across the nodes via their links,
and many other networks also entail transmission of information or materials among the nodes. How-
ever, it is important to clarify that our wordform networks do not come with an assumption of spread-
ing activation or information transmission among wordforms. We employ the network formalism
only for its structural properties.

2.2. Information Theoretic Analysis

To show how a scale-free wordform network is predicted in the balance of distinctiveness and effi-
ciency constraints, we parallel Ferrer i Cancho and Solé’s (2003) information theoretic analysis that
showed how Zipf’s law can be predicted from Zipf’s principle of least effort.

We represent a wordform network as a binary matrix A = {aij}. Each row i represents a wordform
wi, where 1 ≤i≤n and n is the number of words in the lexicon. Each column j also represents a word-
form numbered from 1 to n. Each aij = 1 if w i is a substring of w j (wordforms are treated as substrings
of themselves, i.e., aij = 1 for all i = j), and aij = 0 otherwise. The probability that wordform wi ap-
pears as a substring, relative to all other wordforms, is given by (all sums are from 1 to n),
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The efficiency of a wordform lexicon is defined in terms of the entropy of the substring probability
distribution,

Hn(w) = 0 when a single wordform is used for all words, and Hn(w) = 1 when all wordforms appear as
substrings of other wordforms equally often (the upper boundary is 1 because the log is base n).

The distinctiveness of a wordform wi is defined in terms of its diagnosticity, that is, the amount
that uncertainty is reduced about the identity of a word W given that it contains wi. The negative of
this amount can be quantified by the entropy over the probability distribution of wordforms condi-
tioned by the presence of wi,

Hn(W|wi) = 1 when the presence of w i provides no information about the identity of W, and Hn(W|wi)
= 0 when the presence of w i assures the identity of W. Each conditional probability is given by

Finally, the overall distinctiveness of a wordform lexicon is defined as the average distinctiveness
over wordforms (the average is used to normalize both Hn(w) and Hn(W|w) between 0 and 1),

The balancing of distinctiveness and efficiency now translates into the simultaneous minimization
of Hn(w) and Hn(W|w). These constraints are in opposition to each other because Hn(W|w) = 1 when
Hn(w) = 0, i.e., when a single wordform is used for all words. However, when wordforms appear as
substrings equally often, Hn(w) = 1, there is no guarantee that substrings will be as diagnostic as pos-
sible, Hn(W|w) = 0. This is true because wordforms may be equally “overused” as substrings. Thus
these constraints are not isomorphs of each other. The balance of minimizing Hn(w) versus Hn(W|w)
is parameterized by 0 ≤λ≤1 in

In their parallel analysis, Ferrer i Cancho and Solé (2003). created matrices Aλthat minimizedΩ(λ)
at numerous sampled values of 0 ≤λ≤1 (see also Ferrer i Cancho, 2006). They showed that at λ≈
0.4, a sharp transition existed in the values of their entropic measures that were analogous to Hn(w)
and Hn(W|w). Moreover, they found that the frequency of word usage was distributed according to
Zipf’s law at the transition point. Thus it appears that this point is a phase transition exhibiting a scal-
ing law.

Our analysis parallels Ferrer i Cancho and Solé’s (2003) in order to make the same kind of scaling
law prediction, but in terms of substring structure in a wordform lexicon, rather than word usage in
communication. Thus our analysis predicts a scaling law in the distribution of outgoing links across
wordform nodes, that is, it predicts a scale-free network. This scale-free network is predicted at the
transition point between phases of lexicon distinctiveness versus lexicon efficiency.
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3. Empirical Evidence for Scale-Free Wordform Networks

Our predicted scaling law is relatively straightforward to test. It simply requires the creation of word-
form networks from real languages, and the examination of their structure for a scaling law in their
link distributions. We begin with networks created from phonological and orthographic wordforms in
English, and we then report the same analyses for four other languages.

3.1. English Wordform Networks

A total of 104,347 printed words and 91,606 phonetically transcribed words were drawn from the
intersection of the Carnegie Mellon University pronunciation dictionary and the Wall Street Journal
corpus. The letter strings comprised an orthographic wordform lexicon, and the phoneme strings were
used to create two different phonological wordform lexicons, one with lexical stress markings on the
vowels (primary, secondary, and tertiary) and one without stress markings. The frequency of word-
form usage was not part of the wordform lexicons.

A wordform network was created for each of the three lexicons. Each node in each network cor-
responded to an individual wordform, and within each network one node was linked to another if the
former wordform was a substring of the latter. For the stress-marked lexicon, one wordform was a
substring of another only if both the phonemes and stress markings of the former were contained in
the latter. Each node i of a network had ki outgoing links, where 1 ≤ki ≤n and n is the total number of
wordforms in the corresponding lexicon. As mentioned earlier, the predicted scaling law is usefully
expressed in terms of the cumulative probability distribution, which is linear under a logarithmic
transform (the intercept is zero),

This expression facilitates visualization and analysis of the data.
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Cumulative probability distributions for the three wordform networks are plotted on a log-log
scale in Fig 2. Clear evidence for a scaling law can be seen in the negative linear relation between log
P(≥k) and log k. The exponent of the scaling relation for each distribution was estimated by the slope
of a linear regression line fit to the data between 1 ≤log k ≤3. In theory, scaling laws range over all
scales (i.e., the entire distribution), but empirical observations rarely if ever achieve this ideal be-
cause of limited amounts of data and other practical limitations. These limitations typically show up
in cumulative probability distributions as deviations in the tails from the scaling relation. These de-
viations are slight for the wordform networks plotted in Fig 1, but to avoid them exponents were es-
timated from the middle of the distribution.

The estimated exponents are close to the canonical value of –1 for scale-free networks. The expo-
nent estimate for the orthographic wordform network is slightly more negative than the others, indi-
cating that it is slightly more densely interconnected (and likewise for the phonological network
without stress versus with stress). These differences in density are under investigation but they may
be partly due to the differences in morphological transparency among the lexicons: In English, ortho-
graphic wordforms represent morphological structure more directly, e.g., SIGN is a substring of
SIGNATURE in the orthographic network but not the phonological networks. Differences aside, the
results generally confirm the predicted scaling law.

3.2. Wordform Networks in Other Languages

The same wordform network analyses were also conducted on orthographic wordform lexicons for
Dutch, German, Russian, and Spanish. These particular lexicons were chosen only because they were
readily analyzable and downloadable at ftp://ftp.ox.ac.uk/pub/wordlists. These languages represent a
sample of the Indo-European language family. In terms of their morphological structure, they are
mostly characterized as synthetic languages (i.e., high morpheme-to-word ratios). Comparing these

178,339 Dutch Wordforms
                 γ ≈ -1.01

85,947 Spanish Wordforms
                 γ ≈ -0.91

31,801 Russian Wordforms
                 γ ≈ -1.07

159,102 German Wordforms
                 γ ≈ -1.06

Fig 3. Other Wordform Networks



languages to English, which is more of an isolating language (i.e., low morpheme-to-word ratio) pro-
vides an initial gauge of the degree to which language type influences the results of our analyses.

The cumulative probability distribution for each wordform network is plotted in Fig 3 with the
lexicon size and the estimated scaling exponent (the axes are the same as in Fig 2). All four languages
show evidence of a scaling relation in the center of their link distributions with estimated exponents
near –1. Estimates varied slightly across languages, as did the amount of deviation in the tails of the
distributions.

The wordform statistics of the orthographic lexicons are reported in Table 1. N is the number of
wordforms analyzed, M and SD are the mean and standard deviation of wordform lengths respec-
tively, and γis the estimated scaling exponent of the link distributions. Evidence for the isolating
quality of English morphology is reflected in its shorter mean wordform length compared with the
other languages (fewer and smaller morpheme combinations), which are more synthetic by compari-
son. The slightly less negative scaling exponent for English may be due to its isolating quality, but
this possibility requires further investigation. For our current purposes, it is sufficient that all the
languages exhibit a scaling law as predicted.

Table 1. Summary Statistics for Orthographic Lexicons

N M SD γ
English 104,347 7.3 2.3 -0.82
Dutch 178,339 10.2 3.0 -1.01
German 159,102 11.9 3.5 -1.06
Russian 31,801 8.1 2.4 -1.07
Spanish 85,947 8.9 2.5 -0.91

3.3. Ruling Out an Artifactual Explanation

All together, our network analyses appear to provide considerable evidence for the scaling law pre-
dicted to occur in the balance of distinctiveness and efficiency constraints on the structure of word-
form lexicons. But before coming to this conclusion, we must first determine whether these results
may be an inevitable and therefore trivial property of wordform networks created from substring rela-
tions. In particular, it may be that lexicons composed of variable-length random letter strings also
produce the predicted scaling law. This may seem possible because, even for random letter strings,
shorter wordforms will tend to have more outgoing links compared with longer wordforms, and the
longest wordforms will have no outgoing links. Thus variations in wordform length alone may be
sufficient to create the predicted scaling law.

We tested this artifactual explanation by creating a wordform lexicon comprised of random letter
strings using essentially the same method as used by Mandelbrot (1953), Miller (1957), and Li
(1992). Each wordform was incrementally built up by repeatedly adding a letter with probability p =
0.82, or completing the wordform with probability 1–p = 0.18. Each letter was chosen at random with
equal probability, and the completion probability was chosen so that the average wordform length
would be the same as that for our corpus of English orthographic wordforms. A total of 104,347 ran-
dom wordforms were created, which is the size of our English orthographic wordform lexicon.

The cumulative probability distribution for the random wordform network is plotted in Fig 4. The
graph shows that the distribution does not at all resemble the scaling relation observed for the English
orthographic wordform network, whose distribution is also plotted for purposes of comparison. In-
stead of a scaling relation, the random wordforms yielded a tiered distribution that is indicative of
characteristic numbers of outgoing links per node. For instance, the majority of nodes had only one or
a few outgoing links, but a second large group of nodes had 30-35 links. Hardly any nodes had be-
tween 6 and 18 links. Five other random lexicons were generated and each one resulted in a similarly
tiered distribution.

The failure of random wordform lexicons to yield a scaling relation shows that our results with
real lexicons were not an artifact of length variability in wordform lexicons. It therefore appears that



the observed scaling relations reflect a property of the structural relations among wordforms in natu-
ral languages. To provide further support for this conclusion, we tried to recreate the scaling relation
by creating an artificial wordform lexicon using the bigram frequencies of English orthography.
Wordforms were again built up incrementally, except that the probability of each letter being chosen
was conditioned on the previous letter, and the conditional probabilities were estimated from the
Wall Street Journal corpus. So for instance, if the letter Q happened to be chosen as the first letter of
a given wordform, there was a 97% chance that the second letter would be U. This method created a
wordform lexicon that mimicked the statistical properties of English wordforms.

The cumulative probability distribution for the bigram wordform network is also plotted in Fig 4.
This distribution is much closer to the predicted scaling law in that the tiers are gone and the slope of
the overall descent is near -1. However, there is a “bump” over most of the center of the distribution
that deviates from the nearly perfect linear relation of the English wordform network. This result
indicates that the statistical structure of English wordforms did, in fact, play a role in the observed
scaling relation. However it also suggests that not all relevant aspects of wordform structure are cap-
tured by bigram frequencies because the scaling relation was not entirely recovered. Work is under-
way to determine whether more of the scaling relation can be recovered with artificial lexicons that
more closely mimic the statistical structure of English.

4. Conclusions

In this chapter, theories of criticality were used to predict a heretofore unexamined scaling law in the
structure of phonological and orthographic wordform lexicons. Evidence for the predicted scaling law
was found in the wordforms of five different languages, and analyses of artificial lexicons showed
that the scaling law is not artifactual. The law is hypothesized to emerge from the balance of two
competing constraints on the evolution of wordform lexicons: Lexicons must be as distinctive as pos-
sible by minimizing substring overlap among wordforms, while also being as efficient as possible by
reusing substrings as much as possible. A phase transition is hypothesized at the balance of these high
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and low entropy phases, respectively. Empirical and theoretical work on critical phenomena predicts
a scaling law distribution near the hypothesized phase transition.

The predicted scaling law distribution was expressed in terms of scale-free networks in which
wordforms were connected whenever one was a substring of another. In general, some of these sub-
string links reflect the linguistic structure that underlies wordforms. For instance, root morphemes
like FORM will often be substrings of their inflected and derived forms like FORMED and FOR-
MATION, respectively. Also, monosyllabic wordforms like /fit/ are substrings of multisyllabic word-
forms like /dɪ̀fit/. However, substring relations do not always respect linguistic structure, and not all
linguistic structure is reflected in substring relations. For instance, LAND is a substring of BLAND
even though there is no morphological relation between them, and /ɹid/ is not a substring of /ɹɛd/ even
though the latter verb is the past tense of the former.

This partial correspondence between our wordform networks and linguistic structure makes their
relationship unclear. Substring relations among wordforms fall within in the purview of linguistics,
but they do not appear to have a place in current linguistic theories. Nonetheless, the observed scaling
relations are lawful and non-trivial, as we have argued, and may be universal as well. If so, then it
may prove informative to investigate whether and how scale-free wordform networks may be ac-
commodated by linguistic theory.

For instance, there are some phonological processes that may fit with our explanation of scale-free
wordform networks. Processes like assimilation, elision, syncope, and apocope may generally help to
make wordform lexicons more efficient by creating more overlap among wordforms, whereas proc-
esses like dissimilation, epenthesis, and prothesis may help to make wordform lexicons more distinc-
tive by creating less overlap among wordforms.

Finally, similar ideas have been explored in Lindblom’s Theory of Adaptive Dispersion (Lind-
blom, 1986; Lindblom, 1990) and in Ohala’s Maximum Use of Available Features (Ohala, 1980). In
Lindblom’s theory, for instance, the phonological contrasts of a language are chosen to simultane-
ously 1) maximize the number of contrasts, 2) maximize the distinctiveness of contrasts, and 3)
minimize articulatory effort. Constraint 2 is analogous to distinctiveness as we have defined it, except
that phonological contrasts are more fine-grained than substrings. Constraints 1 and 3 stand in oppo-
sition to Constraint 2, and phonological systems must strike a balance between these opposing con-
straints, analogous to how lexicons must strike a balance between distinctiveness and efficiency. The
similarities between Lindblom’s theory and ours suggest possible avenues of fruitful exchange. In
one direction, Lindblom’s theory may benefit from principles of critical phenomena. In the other
direction, our analysis may benefit from the inclusion of articulatory effort, which clearly has an im-
portant influence on the structure of wordforms. Such theoretical exchanges exemplify the kind of
transdisciplinary work that is currently going on throughout the complexity sciences.
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