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Abstract

Human neural and behavioral activities have been reported to exhibit fractal dynamics known as 1/f
noise, which is more aptly named 1/f scaling. Some argue that 1/f scaling is a general and pervasive
property of the dynamical substrate from which cognitive functions are formed. Others argue that it is
an idiosyncratic property of domain-specific processes. An experiment was conducted to investigate
whether 1/f scaling pervades the intrinsic fluctuations of a spoken word. Ten participants each repeated
the word bucket over 1,000 times, and fluctuations in acoustic measurements across repetitions generally
followed the 1/f scaling relation, including numerous parallel yet distinct series of 1/f fluctuations. On
the basis of work showing that 1/f scaling is a universal earmark of metastability, it is proposed that the
observed pervasiveness of 1/f fluctuations in speech reflects the fact that cognitive functions are formed
as metastable patterns of activity in brain, body, and environment.

Keywords: 1/f noise; Scaling; Metastability; Criticality; Speech; Intrinsic fluctuations

1. Introduction

Cognitive functions are expressed as spatiotemporal patterns of activity in the nervous
system and in behavior. These patterns connect with and extend out to their surroundings
as a result of widespread interactions between brain, body, and environment (Chiel & Beer,
1997; Clark, 1997). In this light, the embodied, situated nature of cognition is founded on the
ability of such expansive patterns to organize in space and time (Kello, Anderson, Holden, &
Van Orden, 2007; Van Orden, Holden, & Turvey, 2003). Of course, these patterns must also
adaptively and flexibly reorganize as organism and environment change in relation to each
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
C
O
G
 
-
 
C
o
g
n
i
t
i
v
e
 
S
c
i
e
n
c
e
 
S
o
c
i
e
t
y
]
 
A
t
:
 
1
5
:
2
2
 
1
 
N
o
v
e
m
b
e
r
 
2
0
0
8



1218 C. T. Kello, G. G. Anderson, J. G. Holden, G. C. Van Orden/Cognitive Science 32 (2008)

other. Thus in viewing cognition as situated pattern formation, a fundamental fact is revealed
that parallels the well-known stability–plasticity dilemma (Carpenter & Grossberg, 1987):
Patterns of cognitive activity must be able to organize, but also reorganize as new patterns in
response to changes in conditions, e.g., changes in the environment, task demands, and so on.

How do interactions within and between brain, body, and environment enable the organi-
zation and reorganization of cognitive activities? This question may at first seem too broad to
be approachable because interactions will differ in their specifics depending on the cognitive
domain and other factors; such differences may appear to entail different theories and, there-
fore, different answers to the question. But domains notwithstanding, one may formulate and
test general principles of brain–body–environment interaction that help to develop theories of
cognition as situated pattern formation. In the present study we draw from statistical physics
to formulate one such principle hypothesized to support the organization and reorganization of
cognitive patterns. We then present an experiment that uses speech to test and ultimately sup-
port the hypothesized principle, which we and others have formulated in terms of metastability
(Bressler & Kelso, 2001; Kello et al., 2007).

Metastability has been used by different research communities for different purposes, but
we use the term to identify systems for which numerous patterns of activity co-exist as latent
potentials. The probability of any particular pattern organizing into existence is a function
of variables both internal and external to the system. A system becomes more flexible, and
more metastable, as its capacity to concurrently hold many distinct latent patterns increases.
This capacity is essential to the adaptability of cognitive systems, and biological systems in
general, because it allows them to respond to changing conditions, i.e., by organizing different
patterns of activity. From this perspective, systems become more adaptive as the probability
distribution over potential patterns is shaped to maximize their expected fitness.

Particularly clear examples in this regard are patterns of fight or flight behaviors that must
co-exist as latent potentials ready to organize in response to ecological competitors or foes
(Cannon, 1932). These behavioral patterns must also be ready to reorganize in response to
changing conditions, as when an organism becomes trapped and must convert flight behavior
into submissive, or fight, behavior. A more cognitive example is provided by speech, in which
many different articulations must co-exist as latent spatiotemporal patterns ready to organize
as needed in the course of speaking (Fowler & Saltzman, 1993). Articulatory patterns span
multiple time scales, from the millisecond dynamics of phonemic features to jaw movements
that span multisyllabic words and phrases. These patterns must organize and reorganize as
speakers transition from one phoneme, word, and phrase to the next. Although metastability
has not yet been applied to theories or models of language and cognition, it has been applied
toward understanding patterns of movement and neural activity (Bressler & Kelso, 2001;
Kelso, 1994).

In statistical physics, metastability is known as a property of physical systems near their
critical points, and the fluctuations of such systems are known to follow a 1/f scaling relation
(Bak, Tang, & Wiesenfeld, 1987; Usher, Stemmler, & Olami, 1995). Systems poised near their
critical points are jittery, analogous to balancing on a tightrope, and the resulting fluctuations
can be analyzed in terms of their frequency components (same as spectral analysis of sound
or light). Critical point fluctuations are characterized by an inverse relationship between
spectral power (amplitude) and frequency, S(f) ≈ 1/fα, where α ≈ 1 (see Fig. 1; see also Bak,
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Fig. 1. Idealized 1/f fluctuations. Note: An example time series of fluctuations is shown that follows an idealized
1/f scaling relation (left). Large, low-frequency changes spanning many measurements can be seen, and nested
within them are smaller, higher frequency undulations spanning fewer measurements. Fourier analysis can be used
to compute the power spectrum of a time series (right). When plotted in log–log coordinates, 1/f spectra are linear
with a slope of –1, i.e., log S(f ) = –α log f , where exponent α = 1 in 1/fα.

1996; Sornette, 2004). These fluctuations are most clearly observed in a system’s intrinsic
fluctuations (Gilden, 2001; Kello et al., 2007; Van Orden et al., 2003).

Intrinsic fluctuations are simply changes in activity that originate from the system being
measured when it is minimally affected by external perturbations. Intrinsic fluctuations in
behavioral activity can be measured by eliciting the same behavioral act repeatedly under
constant measurement conditions. Gilden, Thornton, and Mallon (1995) provided a very
clear example when they instructed participants to estimate from memory the same temporal
interval (e.g., one second), or the same spatial interval (one inch), over and over again, without
feedback. Because the stimuli and measurement conditions did not change across estimates,
the resulting fluctuations can be viewed as intrinsic to behavior; that is, one would expect their
temporal structures to fall in the same universal class regardless of the stimulus or response
being repeated.

Gilden et al. (1995) found that fluctuations in interval estimates followed a 1/f scaling rela-
tion, and similar findings have been reported in a number of other behavioral studies, including
mental rotation and translation (Gilden, 1997), visual search (Aks, Zelinsky, & Sprott, 2002),
simple classifications (Kelly, Heathcote, Heath, & Longstaff, 2001), lexical decision (Gilden,
1997), word naming (Van Orden et al., 2003), color and shape discrimination (Gilden, 2001),
and self-esteem ratings (Delignieres, Fortes, & Ninot, 2004). All of these protocols were
(sometimes inadvertently) well-suited for eliciting intrinsic fluctuations because the same task
was performed repeatedly with relatively small changes in stimuli and responses from one
trial to the next.

1/f scaling has also been found in intrinsic fluctuations of neural activity, such as cur-
rent flow through neuronal ion channels (Banerjee, Verma, Manna, & Ghosh, 2006), rate of
neurotransmitter secretion (Lowen, Cash, Poo, & Teich, 1997), interspike intervals between
action potentials (Bhattacharya, Edwards, Mamelak, & Schuman, 2005), fluctuations in local
field potentials (Leopold, Murayama, & Logothetis, 2003), amplitude levels within EEG and
MEG frequency bands (Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001), fluctu-
ations in interchannel EEG synchronization (Gong, Nikolaev, & van Leeuwen, 2003; Stam
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& de Bruin, 2004), and voxel activations in functional magnetic resonance imaging (fMRI;
Thurner, Windischberger, Moser, Walla, & Barth, 2003; Zarahn, Aguirre, & Desposito, 1997).
Again, all of these protocols were well-suited for observing intrinsic fluctuations.

Results to date indicate that 1/f scaling is associated with intrinsic fluctuations across a
wide range of behavioral and neural expressions of cognitive activity, further supporting the
metastability hypothesis. Nevertheless, it is possible that each observation has its own domain-
specific account, and many such accounts have been offered. For neural 1/f fluctuations,
they include gating processes for ion channels (Siwy & Fulinski, 2002), calcium flow for
neurotransmitter secretion (Lowen et al., 1997), threshold resetting for neuronal spiking
(Davidsen & Schuster, 2002), the filtering properties of brain tissue for local field potentials
(Leopold et al., 2003), and cardiorespiratory pulsation for fMRI data (Bullmore et al., 2001).
For behavioral 1/f fluctuations, they include combinations of ongoing, independent processes
of brain and body (Ding, Chen, & Kelso, 2002; Pressing & Jolley-Rogers, 1997), and quirks
of specific processes such as attention or cognitive control (Wagenmakers, Farrell, & Ratcliff,
2004).

The metastability hypothesis is different from domain-specific accounts in that metastabil-
ity predicts a pervasive quality to 1/f scaling, whereas domain-specific accounts do not. This
pervasiveness comes from the fact that critical phenomena result from the way system compo-
nents interact with each other, not any particular system component or process. Moreover, the
components can be cells, brain areas, body parts, or entire organisms, because metastability
is hypothesized to hold across scales of analysis. Thus potentially many distinct series of
1/f fluctuations should be observable across different measures of intrinsic fluctuation taken
from systems near their critical points. By contrast, domain-specific accounts posit that 1/f
fluctuations come from isolable, oftentimes singular, sources. For instance, Wagenmakers
et al. (2004) proposed a simple model whereby shifts in strategy or attention might generate
1/f fluctuations. In this case, only one or possibly two distinct series of 1/f fluctuations should
be observed for any given series of behaviors.

Kello et al. (2007) tested the pervasiveness of 1/f fluctuations in the intrinsic fluctuations
of key-press responses. They examined not only series of reaction times but also key-contact
durations (i.e., the brief time a key is held down for a typical key-press) in a number of two-
alternative forced-choice experiments. In each experiment, the authors found two distinct and
separately perturbable streams of 1/f fluctuations in these two parallel measurement series.
Extant domain-specific accounts predict only one source of 1/f scaling, and hence only one
source of 1/f fluctuations in key-press responses. Metastability predicts pervasive 1/f scaling,
which naturally accommodates findings of parallel yet distinct series of intrinsic fluctuations.

Nonetheless, Kello et al. (2007) acknowledged that domain-specific accounts might still
be formulated ad hoc. Although it does not appear plausible to assign attentional versus
strategic shifts to reaction times versus key-contact durations, one might instead propose that
1/f fluctuations come from decision-making processes in reaction times, and motor processes
in key-contact durations. The authors argued against this kind of domain-specific account, but
it is difficult to rule out all such accounts on the basis of only two parallel series of intrinsic
fluctuations.

Here we provide a more stark contrast between the metastability hypothesis and its domain-
specific alternatives. We conducted an experiment in which intrinsic fluctuations were elicited
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in repetitions of the spoken word bucket, rather than key-press responses. The word “bucket”
was used because its acoustic syllables could be automatically separated and each spectrally
analyzed to yield many parallel intensity estimates across a wide range of acoustic frequencies.
Intensities fluctuated across repetitions, and the individual series of intensity fluctuations were
analyzed for 1/f scaling. Also, mutually orthogonal series were extracted from the multivariate
data in order to test for many parallel yet linearly independent 1/f fluctuations.

If 1/f scaling pervades intrinsic fluctuations as predicted by the metastability hypothesis,
then all fluctuation series should follow the 1/f scaling relation, including as many linearly
independent series as allowed by the articulatory and acoustic properties of “bucket”. By
contrast, domain-specific accounts posit isolable, individual sources of 1/f scaling (e.g., the
combination of factors, attention, strategic control, motor timing, etc.). Therefore a linearly
distinct source must be posited for each parallel yet linearly independent series of 1/f fluctua-
tions. The viability of domain-specific accounts diminishes as the number of distinct series of
1/f fluctuations increases. Such ad hoc accounts lose explanatory power because a new source
must be posited arbitrarily for each new series of 1/f fluctuations.

2. Experiment

2.1. Method

2.1.1. Participants
Five male and five female undergraduate students 18 to 27 years of age participated in the

experiment for course credit. All reported having normal hearing from birth.

2.1.2. Apparatus and procedure
Utterances were transduced by a head-worn cardiod microphone in a quiet room, and

digitally recorded at 44 kHz using the Logic Pro audio software on an Apple computer. Using
earbud headphones, participants were presented with an audio tone every 1,200 msec, and
they were instructed to pronounce the word bucket in a normal speaking voice each time the
tone was presented. After a short practice session, a block of 1,150 utterances was recorded
for each speaker.

2.1.3. Data preparation
Each recording was visually inspected for noise artifacts that would interfere with acoustic

analyses, and these artifacts were removed along with the affected word utterances. Of the
remaining utterances, the initial ones were discarded so that 1,024 remained for further
analysis. Initial utterances were discarded to minimize any possible start-up effects, and the
number of utterances needed to be a power of two for the upcoming spectral analyses. A total
of 1,024 utterances was chosen in order to cover three orders of magnitude, which is a rule of
thumb needed for reliably estimating a 1/f scaling relation.

After normalization of audio levels across speakers, each series of word utterances was
segmented into two series of syllable signals, one for “buck” and one for “ket.” Syllable
signals were segmented using the automated segmentation tool (with default parameters)
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Fig. 2. Sample acoustics and analysis diagram. Note: At the top is plotted the acoustic waveform of four consecutive
utterances of bucket for 1 participant. Acoustic energy thresholds were used to automatically segment the syllables
(upper middle), and one series of “buck” syllables and one series of “ket” syllables was extracted for each speaker
(lower middle). A long-term average spectrum was computed for each syllable waveform (bottom) resulting in 45
intensity estimates with frequency bands 300 Hz wide and center frequencies from 150 Hz to 13,350 Hz.

that is part of Logic Pro. Then, using the Praat speech analysis software (Boersma &
Weenink, 2000), a long-term average spectrum was computed for each syllable signal using
300 Hz frequency bands with center frequencies evenly spaced from 150 Hz to 13,350 Hz
(see Fig. 2). The result was 45 intensity estimates per syllable, 90 intensity measurements per
spoken word, and 90 measurement series per speaker (see Fig. 3). Bin width was chosen to
be just large enough to integrate over harmonics in the acoustic signal that create unwanted
variations in measurements across frequencies. The upper frequency cutoff was chosen by
inspection to be near the point at which the speech signal fell below noise.
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Fig. 3. Sample series of intensity measurements. Note: At the top are plotted three example fluctuation series
of intensity estimates at three different frequencies, for each syllable and for the same participant as in Fig. 2.
To visualize this participant’s full pattern of fluctuations, all 45 intensity series for each syllable are plotted as
two spectrograms. Intensity is coded using a magenta–black–cyan color scale, and the trial series is on the x
axis. The spectrograms show that intensity fluctuations were temporally non-random and yet non-identical across
frequencies. Spectrograms for other participants are part of the online supplemental materials, as are randomized
trial series that serve as baseline comparisons. All participants showed qualitatively similar patterns of intricate
structure across the intensity series.

2.2. Results

2.2.1. 1/f scaling analyses
In most observations of 1/f fluctuations, the 1/f scaling relation is often “whitened” in the

higher frequencies (i.e., it is intact in the lower frequencies, where most of the 1/f variance is
represented), but there is more power in the higher frequencies than expected if one extrapolates
from the 1/f scaling relation in the lower frequencies. Whitening is at least partially explained
by the fact that measurement errors (e.g., due to imprecision in equipment and protocol) are
likely be independent from one measurement to the next. The resulting white noise, when
added to 1/f fluctuations, will have its greatest effect on the highest frequencies because
power is always least in the highest frequencies of 1/f fluctuations. Therefore, high-frequency
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whitening does not undermine a 1/f scaling conclusion, but it does complicate estimation of
the 1/fα scaling exponent.

To account for high-frequency whitening, Thornton and Gilden (2005) developed a method
for fitting a “fractional Brownian motion plus white noise” (fBmW) model to time series data
averaged in the frequency domain (fractional Brownian motion corresponds to 1/fα scaling
with variable α). The two free parameters are the 1/f scaling exponent (α) and the amplitude of
white noise (β), and the model allows one to estimate α while accounting for whitening with
β. The authors argued that the fBmW model provides a better account of intrinsic fluctuations
in human behavioral data compared with short-range correlation models, which are often-
cited alternatives to 1/f scaling (Farrell, Wagenmakers, & Ratcliff, 2006; Wagenmakers et al.,
2004). Here, we use the fBmW model to estimate scaling exponents while taking into account
measurement errors that add white noise to data.

In order to use the fBmW model, first a composite spectrum was computed for each
individual series of 1,024 spectral intensities, for each participant and each syllable. Each
composite spectrum consisted of eight power estimates divided among eight octave-sized
frequency bins that spanned the full range of measurable frequencies given the number of
data points. Thornton and Gilden’s (2005) maximum likelihood method was used to find the
best-fitting α and β parameters for each composite (the method was also used to fit short-
range correlation models, but the fBmW model was found to be more likely overall given the
data; see Appendix). The distributions of parameters are shown in Fig. 4, collapsed across
participants and syllables.

Both distributions were approximately normal, and the scaling exponent distribution had
a mean of 1.06, which is near ideal 1/f scaling (α = 1). Also, scaling exponents fell well
within the lower bound of ideal white noise (α = 0) and the upper bound of ideal brown noise
(α = 2). White noise fluctuations are uncorrelated from one measured value to the next, and
brown noise fluctuations are just the running sum (integration) of normalized white noise. 1/f
scaling is categorically distinct from white and brown noises because only 1/f fluctuations
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Fig. 4. Distributions of model parameter fits. Note: Thornton and Gilden’s (2005) model was used to estimate
the scaling exponent (α) and amplitude of white noise (β) that best characterized each composite spectrum.
The resulting α and β frequency distributions are plotted, collapsed across acoustic frequencies, syllables, and
participants. Their joint distribution is plotted with circle diameter representing frequency count.
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Fig. 5. Average composite spectra for each syllable and participant. Note: The 45 composite spectra for each
syllable and each participant were averaged together, and each composite per syllable (“buck” left and “ket” right)
and per participant (10 participants, top to bottom) is plotted in log–log coordinates (open diamonds). Participants’
composite spectra are separated in each graph by log units for the sake of visibility. The fBmW model was fit to
each plotted composite, and the resulting model spectra are shown by the solid lines.

exhibit long-range correlations (i.e., each measured value is, in the limit, a function of past
measured values extending arbitrarily far in time; see Bak, 1996; Sornette, 2004).

The distribution of white noise amplitudes indicates that, as expected, the observed scaling
relations were somewhat whitened in the higher frequencies. To better see this effect, composite
spectra were averaged over all 45 measurement series per syllable per subject, and each of the
20 resulting averaged spectra is plotted as a function of frequency in Fig. 5. Every spectrum
shows a negative linear trend in log–log coordinates (indicating a scaling relation) and for most
of them, the slope of the trend is slightly shallower in the higher frequencies (this whitening
appeared less than for typical reaction time data). The figure also shows that the fBmW model
provided a close fit to each participant’s averaged data.

2.2.2. Mutually orthogonal fluctuations
The model fits and resulting α and β parameters indicate that all intensity fluctuations for

all participants tended to follow a whitened 1/f scaling relation. The lawfulness of this finding
is striking when one considers that the individual time series were mostly different between
syllables and acoustic frequencies. Differences can be seen, for instance, in spectrograms
of one participant’s data shown in Fig. 2 and in spectrograms for all the other participants
reported in the online supplemental materials. One can see that fluctuations align in some
regions of the acoustic space for a given syllable, but overall they differ between syllables and
at sufficiently disparate acoustic frequencies. In terms of linear relations, this heterogeneity of
fluctuation is depicted by correlation matrices, shown for one participant in Fig. 6 and in the

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
C
O
G
 
-
 
C
o
g
n
i
t
i
v
e
 
S
c
i
e
n
c
e
 
S
o
c
i
e
t
y
]
 
A
t
:
 
1
5
:
2
2
 
1
 
N
o
v
e
m
b
e
r
 
2
0
0
8



1226 C. T. Kello, G. G. Anderson, J. G. Holden, G. C. Van Orden/Cognitive Science 32 (2008)

Fig. 6. Sample intensity correlation matrix. Note: The correlation matrix for one participant’s set of 90 intensity
fluctuation series is plotted, organized by syllable and by acoustic frequency within syllables. Fluctuations at
nearby frequencies were strongly positively correlated (red squares along the diagonal), with certain frequency
ranges showing greater concentrations of correlation than others (e.g., large red square about midway through the
“ket” frequency range). Also, correlations were generally more positive within syllables than between them (i.e.,
more red in the bottom left and upper right quadrants).

supplemental materials for other participants. This heterogeneity suggests that 1/f fluctuations
in speech do not have a single, linearly isolable source; instead, they appear to pervade the
intrinsic fluctuations of speech.

To examine more explicitly the pervasiveness of 1/f scaling, we used principal components
analysis (PCA) to determine the mutually orthogonal sources of 1/f fluctuation that can be
extracted from each participant’s multivariate data set. Each participant’s set of 90 fluctuation
series was subjected to PCA using the covariance method without rotation, and all 90 principal
components were retained (i.e., 100% of the variance in each set). Each original set of
fluctuations was projected onto its principal component basis to create 90 mutually orthogonal
fluctuation series, each one aligned with one of the components and ordered from most to
least variance accounted for. These fluctuations were then subjected to the same 1/f scaling
analyses as described earlier, resulting in 90 pairs of α and β parameters per participant.
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Fig. 7. fBmW model fits to mutually orthogonal fluctuations. Note: Mean α and β estimates for composite spectra
plotted as a function of principle component, where each data point is averaged over participants. Principle
components are ordered from most to least variance accounted for.

Parameter estimates for each principal component are plotted in Fig. 7, averaged over
participants. The figure shows that the strongest components of the data also exhibited the
most ideal expression of 1/f scaling (α closest to 1), and that α fell toward zero gradually as
components decreased in significance (i.e., accounted for less and less variance; an exponential
decay function provided a close fit to the trend: α = 1.111e−0.023x, where x is principal
component rank, and R2 = 0.91). Also, α was greater than 0.5 for the top 30 orthogonal
fluctuation series, which on average accounted for 90% of each participant’s data. α > 0.5 has
been reported as indicative of 1/f scaling in previous studies of human behavioral fluctuations).
Thus we can conclude that the large majority of variance in “bucket” fluctuations followed a
1/f scaling relation. Moreover, if one assumes isolable sources of 1/f fluctuations, then about 30
such sources would need to be posited in order to explain this variance. β estimates were more
variable and did not appear to change as a function of principal component, which is expected
if fluctuations are whitened by random and independent sources of measurement error.

3. General discussion

We conclude from our results that 1/f scaling pervades the fine-grain, intrinsic fluctuations
of a repeatedly spoken word. Pervasive 1/f scaling is predicted by the metastability hypothe-
sis, which states that cognitive functions organize and reorganize as spatiotemporal patterns
of activity spanning brain, body, and environment. Metastability is known to be a property
associated with systems near critical points, and 1/f scaling is predicted to pervade the fluc-
tuations of systems near their critical points (Usher et al., 1995; Zhang & Liang, 1987). The
pervasiveness of 1/f scaling in speech stands as evidence against domain-specific accounts

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
C
O
G
 
-
 
C
o
g
n
i
t
i
v
e
 
S
c
i
e
n
c
e
 
S
o
c
i
e
t
y
]
 
A
t
:
 
1
5
:
2
2
 
1
 
N
o
v
e
m
b
e
r
 
2
0
0
8



1228 C. T. Kello, G. G. Anderson, J. G. Holden, G. C. Van Orden/Cognitive Science 32 (2008)

of 1/f scaling in human behavior, because one would need to arbitrarily posit many distinct
sources of 1/f fluctuations that manage to express themselves individually in the repetitions
of a spoken word.

The pervasiveness of 1/f scaling in speech activity is analogous to its pervasiveness in
neural activity as expressed by intrinsic fluctuations in single-cell recordings and fMRI voxels
(Bhattacharya et al., 2005; Thurner et al., 2003). Whether one measures behavioral or neural
expressions of cognitive function, the key to eliciting 1/f fluctuations is to hold conditions as
constant as possible from one measurement to the next. In fact, fluctuations in neural activity
from one utterance of “bucket” to the next should also exhibit 1/f scaling, but these fluctuations
are not likely to be directly expressed in measures of acoustic fluctuations. Acoustic variation
is nonlinearly related to kinematics of the speech apparatus (Stevens, 1989), and kinematics
are likely to be nonlinearly related to whatever neural activity is involved in their production.
Thus 1/f scaling in speech and neural activity suggests that a general principle is at work
across these levels, rather than a single source of 1/f fluctuation being reflected in both speech
and neural activity. For instance, it is not that the cerebellum, or any other single isolated
neural structure, is broadcasting a 1/f signal that is detectable in both neural and behavioral
activities.

Despite the pervasiveness of 1/f scaling, one might argue that intrinsic fluctuations are
too peculiar to support such general conclusions; after all, strictly repetitive behaviors are
not typically found in the laboratory or in the wild. Nonetheless, 1/f fluctuations have so far
been found in every task domain of cognitive science where intrinsic fluctuations have been
measured, and intrinsic fluctuations can be measured from any neural or behavioral system.
Thus, the same systems that produce intrinsic 1/f fluctuations also produce more natural acts
of cognition. This fact leaves us with two related questions: (a) What principles are universal
to neural and behavioral systems, at all scales, such that they produce 1/f fluctuations under
conditions of intrinsic fluctuation; and (b) How do these principles inform theories of cognition
in traditional domains such as perception, memory, attention, and language?

Metastability is our proposed answer to the first question, but more empirical and theoret-
ical work is needed to investigate the kinds of systems that have metastability as a pervasive
property, and the kinds of measurement conditions that elicit intrinsic fluctuations. As for
the second question, we suggested how metastable patterns are responsive to changing con-
ditions and may thus provide a foundation for theorizing about the flexible, situated nature
of cognition (Van Orden, Kello, & Holden, in press). For instance, language is notorious for
its flexibility and context dependencies that have thus far confounded traditional notions of
representation and processing (Elman, 2005; Fowler & Saltzman, 1993). Metastability may
play a foundational role in developing theories that accept the flexibility and contextuality of
language as a first principle. Language processes would be simulated as metastable patterns
of activity that organize and reorganize in response to changing conditions.

As a final note, the potential value of metastability for cognitive science was demonstrated
by two recent neural network modeling studies. In one, Kwok and Smith (2005) built a model
that solves combinatorial optimization problems like the famous traveling salesman problem.
The model has a parameter that governs the strength of interaction among neural components.
Network performance was found to be optimal near the point of criticality because the resulting
metastable states enabled the model to most effectively search the problem space for globally
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optimal solutions. In the other study, Bertschinger and Natschlager (2004) examined the effect
of criticality on the computational power of neural network models, where power is defined
in terms of the complexity and diversity of the input/output mappings that can be processed
(see also Langton, 1990; Packard, 1988). Their networks consisted of randomly connected
thresholding neurons, and criticality was assessed as a balance of convergence (order) and
divergence (chaos) in network dynamics. When trained as classifiers, the networks’ ability to
discriminate among classes was greatest at the critical point. It remains to be seen whether
such models can be adopted to simulate human cognitive functions.
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Appendix

Thornton and Gilden (2005) developed a maximum likelihood method to test between
two qualitatively different models of time series data, one being fractal long-range correlation
models and the other being short-range correlation models. The authors used the fBmW model
described in the Results section as the canonical long-range correlation model, i.e.,

Ot = fractal(α)t + white(β)t |,
where Ot is the series value at time t, and fractal (α) and white (β) are functions that
stochastically generate 1/fα series and white noise series with amplitude β, respectively.
They used the autoregressive moving-average (ARMA) model as the canonical short-range
correlation model, i.e.,

Ot = φOt−1 + εt + θεt−1|,
where φ and θ are free parameters that govern the autoregressive and moving-average com-
ponents, respectively, and ε is a source of white noise.

ARMA and fBmW models will generate statistically similar time series under certain
parameterizations, although fluctuations of the former have a characteristic time scale, whereas
fluctuations of the latter do not (for in-depth discussions, see Thornton & Gilden, 2005;
Wagenmakers et al., 2004). Any given set of parameter values in either model will generate
a distribution of fluctuations. From a predefined space of parameter values, the maximum
likelihood method chooses the set that is most likely to generate fluctuations with the spectral
characteristics of an observed fluctuation series. Thus, in a Bayesian sense it finds the best
parameter fit for each model given the data, and the best fit overall.

The two-dimensional parameter space for each model consisted of 2,500 evenly spaced
points. For the fBmW model, α and β each ranged between [0.0, 2.0]; and for the ARMA
model, φ ranged between [0.1, 0.95]; θ ranged between [–0.9, 0.0]. Of 900 composite spectra
(90 fluctuation series for each of the 10 participants), 748 (83%) were more likely to be
generated by the fBmW model compared with the ARMA model (mean fBmW likelihood
= 51.9, mean ARMA likelihood = 47.6; for method details, see Thornton & Gilden, 2005).
Given the model fits shown in Fig. 5, we conclude that the fBmW model provides a very close
account of the data that is superior to the ARMA model.
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