
Critical Branching Neural Computation

Christopher T. Kello and Marshall R. Mayberry

Abstract—Liquid state machines have been engineered so
that their dynamics hover near the “edge of chaos” [1], [2],
where memory and representational capacity of the liquid were
shown to be optimized. Previous work found the critical line
between ordered and chaotic dynamics for threshold gates
by using an analytic method similar to finding Lyapunov
exponents [3]. In the present study, a self-tuning algorithm is
developed for use with leaky integrate-and-fire (LIF) neurons
that adjusts postsynaptic weights to a critical branching point
between subcritical and supercritical spiking dynamics. The
tuning algorithm stabilizes spiking activity in the sense that
spikes propagate through the network without multiplying to
the point of wildfire activity, and without dying out so quickly
that information cannot be transmitted and processed. The
critical branching point is also found to maximize memory and
representational capacity of the network when used as liquid
state machine.

I. INTRODUCTION

Nervous systems tend to be characterized by recurrent
loops across a wide range of spatial and temporal scales [4].
In particular, if one traces the branching of synaptic connec-
tions projecting out from a given starting neuron, numerous
branches can be found to recurrently connect back to the
starting neuron. These recurrent loops may consist of a wide
range of intervening numbers of neurons, and intervening
neurons may range from spatially proximal to distal with
respect to the starting neuron.

Spiking dynamics are thresholded and thus inherently non-
linear. When spiking dynamics are instantiated in recurrent
loops of various scales, the resulting collective activity is
often associated with chaotic dynamics [5], and considered
to be complex in this regard. Model systems have been
proven to be chaotic [6], and real nervous systems have been
observed to exhibit signatures of chaotic dynamics, e.g., in
terms of Lyapunov exponents [7], and entropic measures of
collective neural activity [8].

Evidence for near-chaotic neural dynamics has led re-
searchers to consider whether this property of complexity
might be important for neural information transmission and
processing [9], rather than just a by-product of nonlinearities
and recurrent loops. One possibility is that near-chaotic
dynamics are essential to producing metastable, responsive
spiking activity [10]. Neural networks at all scales (from
microcircuits to subcortical and cortical structures to whole
brains) must be sensitive to external inputs, where external
inputs are spikes originating from outside the network in
question. If incoming spikes are unable to create or perturb
spiking activity in the network, then information would not
be transmitted or processed. However, networks can also be
overly sensitive to perturbations, in which case incoming
spikes may spread like wildfire through the system, again

diminishing the ability of incoming spikes to perturb ongoing
activity.

A. Critical Branching

A balance can be struck between unresponsive and overly
responsive spiking by relating their dynamics to a critical
branching process [11]. Critical branching processes describe
sequences of discrete choice events, where each “ancestor”
event may cause some number of subsequent “descendant”
events, which in turn lead to further event branching. The
expected number of descendant events is described by σ: the
ratio of the number of descendant events over the number
of ancestor events. Spikes are the events in our case, and
external inputs can be described as ancestor spikes that cause
descendant spikes in a given neural system. If σ < 1, then the
number of spikes will diminish over time, and information
will not be transmitted throughout the system in terms of
propagating spiking activity. If σ > 1, then the number of
spikes will grow over time and eventually come to saturate
the network. Critical branching occurs at σ = 1, the point at
which spikes are conserved over time, and can thus propagate
throughout the system without dying out or running rampant.

Electrophysiological recordings of neural activity – both in
vitro [12], [13] and in vivo [15] – have provided evidence for
critical-branching dynamics. The evidence comes in the form
of so-called “neural avalanches” that describe distributions
in bursts of neural activity. In slice preparations of rat
somatosensory cortex, local field potentials were recorded
to measure spontaneous neural activity. This activity was
found to occur in bursts that spread over the tissue, and burst
sizes were measured in terms of the amount of activated
tissue for each time interval, summed over consecutive time
intervals for detected activity. An analogous method was used
to measure bursts from human electroencephalogram (EEG)
recordings during the resting state. In both cases, burst sizes
were found to be power-law distributed with an exponent of
-3/2 (see Fig 1).

Probabilistic models of critical branching have been shown
to simulate power-law distributions of recorded neural activ-
ity [Fig 1; [11]], but due to their probabilistic nature, they
do not have memory or representational capacity. Specifi-
cally, previous models did not include terms for simulat-
ing membrane potentials, action potentials, and weights on
synaptic connections. Thus, they cannot serve as mechanis-
tic models of neural computation. To our knowledge, one
critical-branching model has been reported that uses linear
integrate-and-fire neurons and all-to-all connectivity among
neurons [16], but the models memory and representational
capacities were not tested. The authors also describe an
algorithm for tuning synaptic connection weights to the



  
Fig. 1. Power law distributions of burst sizes (S) expressed as a probability
function, Prob(S), plotted in log-log coordinates. The dashed line shows an
ideal power-law distribution with a -3/2 exponent. Open circles are data
from rat somatosensory slice preparations, and filled squares are from a
probabilistic critical branching model. Taken from [11].

critical branching point, but they do not report tests of the
algorithms performance.

B. Criticality and Liquid State Machines

Critical-branching processes may be useful for regulating
neural spiking dynamics, but critical branching is only one
kind of model of criticality, and other such models have been
shown to support computation. Criticality refers to phenom-
ena observed near phase transitions in systems described
by statistical mechanics. In particular, transitions between
ordered (regular) and disordered (chaotic) phases have been
associated with computational capacity [17], [18].

Most relevant to the current work, “edge of chaos” com-
puting has been simulated in terms of liquid state ma-
chines [1], [2]. Liquid state machines use recurrent loops
among nonlinear processing units to create dynamical ac-
tivity that can be perturbed with external inputs. Loops are
created using largely arbitrary patterns of synaptic connec-
tivity (e.g., random or stochastic lattice connectivity), the
rationale being that irregular patterns of connectivity should
capture computationally relevant characteristics of real neural
networks [6], although other patterns of connectivity have
been explored in the literature that are more neurobiologi-
cally motivated [19]. Liquid state machines use a separate
“readout” function, such as a linear classifier, to extract
information about previous external inputs from current,
instantaneous activities. Analyses and simulation results have
shown that dynamics in liquid state machines play the role
of kernel functions in support vector machines [20], thereby
making nonlinear input classifications linearly separable.

In addition to random connectivity, liquid state machines
are also typically designed with weights on synaptic connec-
tions chosen a priori in order to produce computationally
useful, general-purpose dynamics. For the edge-of-chaos

liquid state machine, Bertschinger and Natschläger sampled
weights at random from Gaussian distributions with zero
mean and parameterized variances. They used discrete linear
threshold gates as their processing units, as well as biases
towards positive or negative outputs served as a second
parameterization on discrete network dynamics. Lastly, each
neuron was randomly connected to K other neurons in the
network, where K served as a third parameterization on
network dynamics.

These three parameters were set by hand to the critical line
between ordered and chaotic dynamics using a sampling ap-
proach for discrete dynamics that is analogous to estimating
Lyapunov exponents for continuous dynamics [3]. Networks
were tested when poised near the critical line, and to either
side of it. Results showed that computational performance
was enhanced near the critical line, where performance
was related to the ability of network dynamics to encode
information about external inputs over time. In particular,
network dynamics were perturbed by random bit sequences
of external inputs, and a linear classifier was trained on arrays
of neuronal outputs at each time t. Classifiers were trained
on the 3-bit 3-bit parity function for 3-bit sequences going
back in time t−τ . Thus to obtain accurate classifications, the
network state at time t needed to code external inputs going
back t − τ steps, and the state needed to linearly separate
sequence information presented in a nonlinearly separable
form.

Results showed that, when tuned near the critical line,
liquid state machines produced dynamics with the longest
and most accurate encodings (as defined above) of external
inputs. Critical line tuning also resulted in performance that
scaled up most sharply with increased numbers of model
neurons.

II. SELF-TUNED CRITICAL-BRANCHING MODEL

Here we present a model that simulates neural computation
near criticality, but in a network of spiking neurons instead of
threshold gates. The model includes a self-tuning algorithm
that is local to each neuron’s postsynaptic array, and local
in time with respect to each presynaptic firing event and
its immediate postsynaptic consequences. By comparison,
Natschläger et al. [2] proposed a presynaptic tuning al-
gorithm for threshold gate neurons, using moving average
computations to estimate threshold crossing probabilities.
The model is described next, followed by analyses showing
the efficacy of tuning in terms of performance as a liquid
state machine.

A. Leaky Integrate-and-Fire Neurons

For each time step t, the membrane potential of every
model neuron is determined from the weighted sum of spikes
from presynaptic neurons, as well as from external inputs,
according to the equation

vt+1 = δ
[
(vt + εt) ◦ (1− st) + (Wt − ζ I) st

]
, (1)



where ◦ denotes the Hadamard product (i.e., element-wise
multiplication). The notation 1 denotes the column vector of
ones. Each term represents:
• δ: the leak time constant (set to 0.9);
• vt: the membrane potentials of neurons at time t;
• εt: external input/perturbation to vt;
• Wt: the weight matrix between neurons;
• ζ : an analogue of the refractory period (set to 1.0);
• I: the identity matrix;
• st: the Boolean vector denoting spikes in vt, i.e.,

st .= [vt ≥ 1],
using Iverson notation for a Boolean condition.

B. Critical Branching Tuning Algorithm
The tuning algorithm adjusts the postsynaptic weights of

a given model neuron so that, when it spikes, one and
only one spike is expected to follow over the postsynaptic
array of neurons. The algorithm weights each descendent
spike relative to its number of ancestor spikes n over its
presynaptic array on the preceding time step, i.e,. 1/n. The
algorithm decreases weights projecting out from a given
postsynaptic neuron by a factor β when the sum of weighted
spikes over its postsynaptic array is greater than one. The
algorithm increases weights by β when the sum is less
than one (no change is made when equal to one). β was
set to 0.01 for all simulations. More formally, the critical-
branching tuning algorithm can be described by the following
equations, presented for readability

ct = Stst

yt = (ct + ct)−1

zt+1 = (St)T (st+1 ◦ yt)
nt+1 = sgn(1− zt+1)
Nt+1 = 1(st ◦ nt+1)T

∆t+1 = β(St ◦Nt+1)
Wt+1 = Wt + ∆t+1 (2)

where, letting pt = St1 denote the number of postsynaptic
neurons for each presynaptic neuron in vt, the terms in
Equation 2 represent:
• St: the Boolean matrix defined by [Wt 6= 0];
• ct: the count of postsynaptic spikes w.r.t. st;
• yt: the fraction of postsynaptic spikes to pt;
• zt+1: the sum of presynaptic terms w.r.t. st+1;
• st+1: the Boolean vector denoting spikes in vt+1;
• nt+1: the sign of weight updates w.r.t. zt+1;
• Nt+1: the signed outer product w.r.t. st and nt+1;
• ∆t+1: the update matrix based on St and Nt+1.

It is important to note that the critical-branching tuning
equations do not involve any matrix inversions, and indeed,
the update weight matrix is only a function of the Boolean
matrix St and its transpose. Although current research is
focussed on simplifying the equations further, the current
formulation suggests that Equations 1 and 2 should be
amenable to analysis for convergence. Also, it is interesting
that the state vector st has a matrix analogue St, the primary
function of which is the computation of presynaptic and
postsynaptic spikes. Finally, the notation ct simply denotes
the Boolean complement of ct to avoid division by zero.

C. Network Connectivity

LINP

L

L

LSM

OUT

Fig. 2. Schematic of three-layer network architecture used for liquid state
machines (not all connections are shown).

All of the liquid state machine results were obtained using
the layered connectivity shown in Figure 2. External inputs
were presented as “forced” spike patterns on the input layer,
which consisted of N neurons. Each input layer neuron was
randomly connected to m LSM neurons, of which there were
2N in number. Each LSM neuron was randomly connected
to 2m LSM and output neurons at random, and there were
2N output neurons. The numbers of neurons and post-
synaptic connections were manipulated in some simulations,
but unless noted otherwise, m = 6 and N = 250.

Classifiers were trained on spike patterns over the LSM
layer (see below). Classifiers could also be trained on the
output layer, and preliminary results suggest that similar
performance is obtained for the output layer. However, in
the current simulations, the output layer served a different
purpose. Output neurons had no post-synaptic connections,
which meant that spikes occurring in the output layer “ex-
ited” the network. That is, the critical branching algorithm
did not count these spikes as ancestors with descendant
spikes. Spiking models that are critical branching need a way
for spikes to exit the network. Otherwise, as external inputs
create spikes, those spike will fill the network to the point of
saturation. The reason is that, in a closed recurrent network,
perfect critical branching will cause each spike to propagate
forever.

III. CRITICAL-BRANCHING RESULTS

Convergence of the tuning algorithm was tested using
the default layered network as described above. Weights
were initialized in either a subcritical or supercritical regime
by uniformly sampling weights from either a narrow range
around zero, [−0.125 : 0.125], or around two (Fig 3). Input
layer neurons were divided randomly into two halves, and
on each time step, neurons in one of the two halves were
forced to spike. For the purpose of testing convergence, this
external input procedure was only a means of driving the
network with spikes and engaging the tuning algorithm. The



0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

  t

   σ

D(U) = U([−1.0:1.0])/8

W    = 2.0+D(U)init

W    = 0.0+D(U)init

Fig. 3. Instantaneous estimates of the critical branching exponent plotted for
each time step of simulation (dashed lines are placed at the critical branching
points). Weights were initialized around a mean of either 0 (subcritical) or
2 (supercritical). Initial transients are not shown for sake of clarity.

two halves of the input layer are used again later to test
memory and representational capacity of tuned networks as
liquid state machines. Finally, critical branching (σ) was
estimated instantaneously by dividing the number of spikes
at time t by those at t − 1. Fig 3 shows that the network
quickly converges to critical branching and remains there.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

log S

lo
g

N
(S

)

N (S ) ≈ S
−3/2

Fig. 4. Histogram of neural avalanche sizes, plotted in log-log coordinates.
A regression line (dashed) was fit to the first 20 points of the distribution,
and its resulting slope was ≈ −3/2.

As noted earlier, critical branching is associated with
neural avalanches in cortical slice preparations as well as
simple probabilistic spiking models. Neural avalanches are
observed when network activity is mostly intrinsic, and only
occassionally perturbed by small amounts of external input.
The layered network prohibits power law distributions in
avalanches because spikes exit the network too quickly.
Therefore, avalanches were investigated using a single re-

current layer of 1000 neurons, with m = 6, and no output
layer. Instead of an output layer, spike saturation was avoided
by forcing each spike to exit the network with 0.1 probability
on each time step. In other words, any given neuron served
as an “output” neuron with 0.1 probability when it spiked.
The network was tuned to critical branching while driving
network activity by forcing each neuron to spike with 0.01
probabilty on each time step. In other words, any given
neuron served as an “input” neuron with 0.01 probability
on each time step.

Once tuned, the network was driven with “avalanche
pings” instead of the procedure just described for initial
tuning. To start an avalanche from a silent (i.e. non-spiking)
network, a single neuron was forced to spike. Propagated
spikes were then counted over time until network activity
died out, at which point another neuron was pinged at
random, and the process was repeated for 50,000 time steps.
Avalanche sizes corresponded to numbers of spikes between
pings, and the histogram of avalanche sizes is plotted in
Fig 5 in log-log coordinates. The figure shows that simu-
lated neural avalanches followed the predicted power law
distribution with a −3/2 exponent for most avalanches, i.e.,
those of small to medium size. The power law fell off for
large avalanches due at least in part to limited model size.

IV. LIQUID STATE MACHINE RESULTS

To assess memory and representational capacity of tuned
spiking dynamics, the layered network was tested on three
different classification tasks. The first was to compute the
XOR function for external inputs t − τ steps back in time,
using only the pattern of spikes produced at time τ . XOR
assesses the ability of spiking dynamics to separate external
inputs, and maintain separation and representation over time.
The second task was to compute the 3-bit parity function
over external input sequences τ time steps long, which is
nonlinearly separable like XOR, but assesses combinations
over successively longer input sequences. 3-bit parity also
allows us to compare our results with those of [1], [2]. The
XOR and 3-bit parity tasks include an element of noise, in
that intervening bits between τ and the current time step
must be ignored. The third task was n-bit parity classification
going t − τ steps back in time, which requires memory of
all bits going t− τ steps back in time.

For the XOR and 3-bit parity functions, bit sequences were
presented as external inputs by choosing half the neurons in
the input layer at random to represent 0, and the other half
to represent 1. Bit 0 or 1 was presented to the network at
time t − τ by setting εi(t − τ) = 1 for all i representing
either 0 or 1, respectively (εi(t− τ) = 0, otherwise).

Weights were initialized in the range [−1.0, 1.0]. Networks
were tuned for 5000 time steps on each of which a bit repre-
sentation was presented on the input layer as external input.
Weights were then frozen and external inputs continued to be
presented for another 50000 time steps. Networks produced
spike patterns over neurons in their output layers on each
time step, and patterns for four of every five time steps were



used to train classifiers. Patterns on the remaining time steps
were used to test trained classifiers.

A separate, non-spiking perceptron classifier was trained
for each classification task and each sampled value of
τ ∈ [1, 15]. Gradient descent was performed on the per-
ceptron weights wi on the task-specific objective function,
B(t− τ) = Θ (

∑
i si(t)wi)), where Θ is a binary threshold

function, si(t) are the spikes produced by neuron i, and
∑

ranges over all neurons i. For each classifier, the gradient
descent algorithm was run for a total of 1.5 million training
epochs, at which point error always reached asymptote for
the training spike patterns.

A:

2 4 6 8 10 12 14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

   τ

   A
cc

ur
ac

y

 

 
XOR
3−bit Parity
15−bit Parity

B:

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

   τ

   I
τ(V

;Y
)

 

 
XOR
3−bit Parity
15−bit Parity

Fig. 5. Liquid state fading memory capacity (τ ) for three different
functions: XOR, 3-bit parity, and n-bit parity classification. Panel A shows
performance in terms of accuracy. Panel B shows the performance in terms
of mutual information, I(V ;Y ).

Liquid state machine performance on the three classifi-
cation tasks was evaluated in terms of accuracy (percent
correct), as well as mutual information and a corresponding
measure of memory capacity. Memory capacity is defined as
the sum, MC =

∑
τ Iτ (V ;Y ), of the mutual information,

Iτ (V ;Y ) between classifier output, vτ (·) trained on a delay
of τ time steps, and the target function, yτ (·). Results
in [1] showed this definition of memory capacity was less
susceptible to nonlinearities in the output than performance

measures premised on temporal correlations such as the
determination coefficient originally used to define memory
capacity in [21], whose analysis nonetheless inspired the
performance measure used in [1]. Fig 5 shows classifier
performance in terms of accuracy as well as mutual informa-
tion, Iτ (V ;Y ), as a function of τ . In addition to its ability
to capture nonlinear correlations in temporal classification
tasks, mutual information has the additional advantage in
that it is naturally linear: that is, Iτ (V ;Y ) lends itself to
simple summation over any range of delays because it is
based on logarithms. In particular, mutual information relates
two random variables, V and Y , with respect to the joint
and marginal distributions of their possible outcomes. Mutual
information is defined as

I(V ;Y ) =
∑
v′

∑
y′

p(v′, y′) lg
p(v′, y′)
p(v′) p(y′)

(3)

where p(v′, y′) represents the joint probability that V has
outcome v′ and Y , outcome y′, while p(v′) and p(y′) are
the marginal probabilities of the random variables. More
precisely,

p(v′, y′) = P (V = v′ ∧ Y = y′), (4)

is the joint probability for each possible pair of outcomes,
and

p(v′) = P (V = v′) and p(y′) = P (Y = y′) (5)

are the marginal probabilities of the outcomes alone. If V and
Y are statistically independent, then p(v′, y′) = p(v′) p(y′),
in which case the rational argument of the logarithm in
Equation 3 is 1, and I(V ;Y ) is accordingly 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

   σ

   M
C

 

 

Untuned

XOR
3−bit Parity
15−bit Parity

Fig. 6. Liquid state performance for the three different classification tasks
(XOR, 3-bit parity, and n-bit parity) plotted as a function of estimated σ
after tuning with biased towards subcritical (left of σ = 1) or supercritical
(right of σ = 1). Memory capacity is plotted from τ ∈ [1, 15], and m = 6
for this simulation.

Fig 6 shows liquid state performance as a function of
tuning to subcritical, critical, and supercritical dynamics.
Tuning was manipulated by making weight changes away



from critical with some probability. Subcritical versus super-
critical dynamics were tuned by biasing weight changes in
one direction or the other with uniform probability in the
range [0.0 : 0.6]. This bias was used to achieve a range of
σ estimates. Fig 6 shows that performance was maximized
near the critical branching point σ ≈ 1.

0 1 2 3 4
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

   250 × 2n Neurons Per Layer

   M
C

 

 
XOR
3−bit Parity
15−bit Parity

Fig. 7. Liquid state performance in terms of MC for the three different
classification tasks (XOR, 3-bit parity, and n-bit parity) plotted as a function
of number of neurons per LSM layer (250, 500, 1000, 2000, and 4000).

Fig 7 shows the effect of total number of model neurons on
liquid state performance at the critical branching point. For
all three classification functions, performance scaled roughly
linearly with the number of neurons, as also reported in [1]
in their edge-of-chaos liquid state machine. Again, this is
to be expected given the logarithmic behavior of mutual
information that is inversely proportional to the exponential
increase in neurons per layer shown in Fig 7.

2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

4.5

5

   m

   M
C

 

 
XOR
3−bit Parity
15−bit Parity

Fig. 8. Liquid state performance for the three different classification tasks
(XOR, 3-bit parity, and n-bit parity) plotted in terms of MC as a function
of the number of postsynaptic connections (m) on the input layer (2m on
the LSM and output layers).

Finally, Fig 8 shows the effect of number of postsynaptic
connections on performance after tuning to the critical-

branching point. Overall, performance was not greatly af-
fected in the range of m from 2 to 10 postsynaptic connec-
tions per input neuron (i.e., 4 to 20 per LSM and output
neuron), but performance was slightly maximal at m = 6.

V. CONCLUSION

A network of leaky integrate-and-fire neurons self-tuned
to a critical-branching point using an algorithm that is
local to each model neuron and its postsynaptic array. The
model simulated neural avalanches that are predicted by
critical branching, and have been demonstrated in cortical
activity measured in vivo and in vitro [11]–[13], [15], [22].
The model also showed maximal performance as a liquid
state machine when tuned to critical branching. Thus the
model relates stability of spiking dynamics with memory
and representational capacity. Results raised a number of
questions to be addressed in future work:
• The algorithm counted numbers of postsynaptic spikes,

yet it is not clear how such a count would be im-
plemented in neurophysiology (c.f. presynaptic scal-
ing; [23]).

• The tuning algorithm does not need to differentially
adjust each array of synapses onto the postsynaptic
neuron (although it does in the current implementation);
alternatively, preliminary work indicates that synaptic
weights can be uniformly increased or decreased to
achieve critical branching. Further work is needed to
determine whether such a postsynaptic renormalization
algorithm can work in tandem with either Hebbian or
synaptic timing dependent plasticity algorithms [24],
[25]. One can also imagine learning algorithms that
might work with the current tuning algorithm to replace
the engineered read-out function used in liquid state
machines.

• Neurons tend to be either excitatory or inhibitory, and
their connectivity patterns differ from each other, and
vary as a function of cortical and subcortical areas.
Further work is needed to investigate critical branching
and corresponding tuning algorithms in the context of
different network architectures.

• Criticality is also associated with long-range correla-
tions (i.e., 1/f noise) in fluctuations in neural activ-
ity [26]–[29]. Preliminary work indicates that critical
branching may also generate 1/f noise fluctuations
in spiking activity, further suggesting a link between
criticality and computational capacity of neural circuits.

ACKNOWLEDGMENT

This work was funded by the DARPA SyNAPSE program.
The authors thank Dharmendra Modha and the rest of the
IBM SyNAPSE team for their helpful comments and support.

REFERENCES

[1] N. Bertschinger and T. Natschläger, “Real-time computation at the
edge of chaos in recurrent neural networks,” Neural Computation,
vol. 16, no. 7, pp. 1413–1436, 2004.



[2] T. Natschläger, N. Bertschinger, and R. A. Legenstein, “At the edge of
chaos: Real-time computations and self-organized criticality in recur-
rent neural networks,” in Advances in Neural Information Processing
Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge,
MA: MIT Press, 2005, pp. 145–152.

[3] B. Derrida and Y. Pomeau, “Random networks of automata: A simple
annealed approximation,” Europhysics Letters (EPL), vol. 1, no. 2, pp.
45–49, 1986.

[4] G. Buzsáki, Rhythms of the Brain. Oxford, UK: Oxford University
Press, 2006.

[5] W. J. Freeman, “Neurodynamics: an exploration in mesoscopic brain
dynamics,” in Perspectives in Neural Computing, J. G. Taylor, Ed.
London; New York: Springer, 2000, pp. 1–24.

[6] C. van Vreeswijk and H. Sompolinsky, “Chaos in neuronal networks
with balanced excitatory and inhibitory activity,” Science, vol. 274, pp.
1724–1726, 1996.

[7] A. Babloyantz, J. Salazar, and C. Nicolis, “Evidence of chaotic
dynamics of brain activity during the sleep cycle,” Physics Letters
A, vol. 111, no. 3, pp. 152–156, 1985.

[8] O. A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola,
M. Schürmann, and E. Basar, “Wavelet entropy: a new tool for analysis
of short duration brain electrical signals,” Journal of Neuroscience
Methods, vol. 105, no. 1, pp. 65–75, 2001.

[9] M. Adachi and K. Aihara, “Associative dynamics in a chaotic neural
network,” Neural Networks, vol. 10, no. 1, pp. 83–98, 1997.

[10] G. Tononi, G. M. Edelman, and O. Sporns, “Complexity and co-
herency: integrating information in the brain,” Trends in Cognitive
Science, vol. 2, no. 11, 1998.

[11] C. Haldeman and J. M. Beggs, “Critical branching captures activity
in living neural networks and maximizes the number of metastable
states,” Physical Review Letters, vol. 94, no. 5, p. 058101, 2005.

[12] J. M. Beggs and D. Plenz, “Neuronal avalanches in neocortical
circuits,” The Journal of Neuroscience, vol. 23, no. 35, pp. 11 167–
11 177, 2003.

[13] ——, “Neuronal avalanches are diverse and precise activity patterns
that are stable for many hours in cortical slice cultures,” The Journal
of Neuroscience, vol. 24, no. 22, pp. 5216–5229, 2004.

[14] T. Montez, S.-S. Poil, B. F. Jones, I. Manshanden, J. P. A. Verbunt,
B. W. van Dijk, A. B. Brussaard, A. van Ooyen, C. J. Stam, P. Schel-
tens, and K. Linkenkaer-Hansen, “Altered temporal correlations in
parietal alpha and prefrontal theta oscillations in early-stage alzheimer
disease,” Proceedings of the National Academy of Sciences, USA, vol.
106, no. 5, pp. 1614–1619, 2009.

[15] D. Hsu and J. M. Beggs, “Neuronal avalanches and criticality: A
dynamical model for homeostasis,” Neurocomputing, vol. 69, pp.
1134–1136, 2006.

[16] A. Levina, U. Ernst, and J. M. Hermann, “Criticality of avalanche
dynamics in adaptive recurrent networks,” Neurocomputing, vol. 70,
no. 10-12, pp. 1877–1881, 2007.

[17] C. G. Langton, “Computation at the edge of chaos: Phase-transitions
and emergent computation,” Physica D, vol. 42, pp. 12–37, 1990.

[18] R. A. Legenstein and W. Maass, “Edge of chaos and prediction of
computational performance for neural microcircuit models,” Neural
Networks, vol. 20, no. 3, pp. 323–334, 2007.

[19] T. Natschläger and W. Maass, “Dynamics of information and emergent
computation in generic neural microcircuit models,” Neural Networks,
vol. 18, pp. 1301–1308, 2005.

[20] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[21] H. Jaeger, “Short term memory in echo state networks,” German
National Research Center for Information Technology, Tech. Rep.
GMD Report 152, 2002.

[22] J. M. Beggs, “The criticality hypothesis: How local cortical networks
might optimize information processing,” Philosophical Transactions:
Mathematical, Physical and Engineering Sciences, vol. 366, pp. 329–
344, 2008.

[23] G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the
developing nervous system,” Nature Reviews Neuroscience, vol. 5,
no. 2, pp. 97–107, 2004.

[24] J. Burrone and V. N. Murthy, “Synaptic gain control and homeostasis,”
Current Opinion in Neurobiology, vol. 13, no. 5, pp. 560–567, 2003.

[25] G. G. Turrigiano and S. B. Nelson, “Hebb and homeostasis in neuronal
plasticity,” Current Opinion in Neurobiology, vol. 10, no. 3, pp. 358–
364, 2000.

[26] K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, K. Kaila, and
R. J. Ilmoniemi, “Stimulus-induced change in long-range temporal
correlations and scaling behaviour of sensorimotor oscillations,” The
Journal of Neuroscience, vol. 19, no. 1, pp. 203–218, 2004.

[27] K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, and R. J.
Ilmoniemi, “Long-range temporal correlations and scaling behavior
in human brain oscillations,” The Journal of Neuroscience, vol. 21,
no. 4, pp. 1370–1377, 2001.

[28] K. Linkenkaer-Hansen, D. J. A. Smit, A. Barkil, T. E. M. van
Beijsterveldt, A. B. Brussaard, D. I. Boomsma, A. van Ooyen, and
E. J. C. de Geus, “Genetic contributions to long-range temporal
correlations in ongoing oscillations,” The Journal of Neuroscience,
vol. 27, no. 50, pp. 13 882–13 889, 2007.

[29] C. Bèdard, H. Kröger, and A. Destexhe, “Does the 1/f frequency
scaling of brain signals reflect self-organized critical states?” Physical
Review Letters, vol. 97, no. 11, p. 118102, 2006.


