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Three neural network models were trained on the forward mapping from articulatory positions to
acoustic outputs for a single speaker of the Edinburgh multi-channel articulatory speech database.
The model parameter@.e., connection weightswere learned via the backpropagation of error
signals generated by the difference between acoustic outputs of the models, and their acoustic
targets. Efficacy of the trained models was assessed by subjecting the models’ acoustic outputs to
speech intelligibility tests. The results of these tests showed that enough phonetic information was
captured by the models to support rates of word identification as high as 84%, approaching an
identification rate of 92% for the actual target stimuli. These forward models could serve as one
component of a data-driven articulatory synthesizer. The models also provide the first step toward
building a model of spoken word acquisition and phonological development trained on real speech.
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I. INTRODUCTION quencies are acoustic dimensions known to play a role in
distinguishing vowels from each other. In forward models of
A necessary component of any complete model Ofhe articulatory-acoustic mapping, functions have been de-
speech acquisition or speech production is the physical relgiyeq in order to relate these and other articulatory and
tionship between the shape of the vocal tract, and the acougyqystic dimensions to a physical model of the vocal tract
tic energy emitted from the vocal tract. This relationship IS(e.g., Baeret al, 1991: Goodyear, 2000Models of the vo-
often referred to as théorward mapping from articulatory oy tract used for this purpose are commonly divided into a
states to acoustic outputs, whereas theerse mapping  goyrce of acoustic energy, and a filter through which the
would recover articulatory states from the speech sigiat o5 rce is passed. One of the best known examples is the
dan and Rumelhart, 1992The forward mapping is integral kejly and Lochbaum(1962 model of the vocal tract in
to speech production because the primary proximal stimulughich the filter is modeled as series of tubes with varying
used by the listener is the acoustic speech signal. Therefor%ngths and diameters.
to produce comprehensible speech, the talker must somehow 14t forward models developed thus far can be thought

take into account the forward mapping from articulatory of aq theory-drivenbecause they are, in large part, derived
commands to acoustic outputs. , from physical principles of the vocal traffor an exception
The articulatory-acoustic mapping has been studied prig, 5tomatic speech recognition, see Blackburn and Young,
marily for two purposes. One is to better understand howsg04. These theory-driven models have served as valuable
speech is perceived and produced by hum@ng., Rubin,  research tools for relating the underlying theories to empiri-

Baer, and Mermelstein, 1981and the other is to develop (5 gata on speech production. The theory-driven approach
articulatory-based techniques for automatic speech recognjjag aiso proven instrumental in the development of articula-
tion (e.g., Blackburn and Young, 2000and speech synthe- (o sheech synthesizers because it reduces the complexity of

sis (e.g., Greenwood, Goodyear, and Martin, 1092 the o \ocal tract down to a manageable number of functions.
service of these purposes, computational models have been are we present a forward model of the articulatory-

developed to simulate the forward mapping from articulation, . stic mapping that was thorougldata-drivenby design.

to acousticge.g., Baeret al, 1991; Beautemps, Badin, and 1he model was an artificial neural network trained on the

Laboissiere, 19965 These forward models have been based,icyjatory and acoustic recordings from one speaker in the
upon articulatory and acoustic dimensions that are known tQ, ,isi-channel articulatory (MOCHA) speech database
convey phonetic information, and upon physical principles(Wrench and Hardcastle, 200Cecorded at the Edinburgh

of the vocal tract. For instance, place of contact between thgpeech production recording facility. Inputs to the model
tongue and the upper surface of the oral cavity is an articuy g electromagnetic articulograplEMA), electropalato-
latory dimension known to play a role in distinguishing Somegraph(EPQ, and laryngograpiLYG) measurements, each
consonants from each othdradefoged, 1998 Formant fre- \inqowed over 64 ms slices of time. The output of the model
was a power spectrum of the speech acoustics at the center of
dElectronic mail: ckello@gmu.edu each 64 ms slice. The inputs and outputs were coded in the
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model as patterns of activity over sets of connectionist proinitial test of the viability of a data-driven articulatory speech
cessing units. The mapping from inputs to outputs was govsynthesizer.
erned by a single set of weights on the connections between The second aim of the current work was to take a first
input and output units, some of which were mediated bystep toward building a computational model of phonological
hidden unitgsee Sec. )l Thus, a single, unified set of model development. A fundamental question in research on speech
parameters had to represent the entire mapping from artici@cquisition is how does the infant language learner acquire
latory inputs to acoustic outputs. The weights were deterknowledge about the phonological structure of his or her
mined by gradient descent learning, which was driven tdanguage. Moreover, how is that knowledge represented in
minimize error between acoustic outputs and their correthe mind and brain of the learner, and then used in language
sponding targets. Acoustic targets were derived from thdasks such as spoken word comprehension and production?
acoustic recordings. In recent years, computational models of speech acquisition
The model was purely data-driven in that values for thednd production have been developed as tools for exploring
model parameteré.e., the weightswere learned solely on and testing the underlying theori€Bailly, 1997; Guenther,
the basis of articulatory and acoustic data from recorded994, 1995; Guenther, Hampson, and Johnson, 1998; Plaut
speech tokens. In other words, the parameters wereanot and Kello, 1999. An integral component of these models is
priori set on the basis of physical principles of the vocalthe simulation of babbling and early attempts at the produc-
tract. Moreover, the articulatory and acoustic dimensiondion of spoken words. The forward mapping from articula-
were “raw” in the sense that they did not directly code ar- fion t0 acoustics is essential for such s_lmulatlons.
ticulatory or acoustic features known to convey phonetic in-  1he forward model reported here is planned to be one

formation. For instance, articulatory features such as place g°MmPonent of a computational model of spoken word acqui-
manner of articulation were not extractadpriori from the ~ Sition and processing. Plaut and Kel(#999 presented a
articulatory recordings, nor were acoustic features such agonnectionist model of spoken word acquisition and process-

formant frequencies. Instead, the articulatory and acoustit"d in which distributed representations were learned in the
data streams were presented to the model in a largely unproégrv'ce of speech tasks. The central hypothe§|s te;ted in that
essed format. It is true that some assumptions were built intB100|e| was that a learned level of representation exis($)to

the model architecture, e.g., that acoustic states could be d@tegrate the speech signal over word-sized ufsgener-

termined on the basis of a certain window of articulatoryate algtuiulatory traliectonez ?ver worg-?;]ze_d units, 48y Thi
data, and that acoustic targets are unimadake Sec. )l map between spoken word torms an €Ir meanings. 1his

However, these assumptions were minimal, and in som!a‘eveI of representation was termed phonolqu _because Its

: . Structure was hypothesized to be phonological in nature by
cases, they were forced by constraints of the articulatory re-. .
cordings virtue of the three core speech tasks that it supported. Thus,

The data-driven approach to forward modeling is difrer_the model was aimed at simulating how phonological repre-

. . . sentations emerge over the course of spoken word acquisi-
ent from the theory-driven approach in that all empirical data&i 9 P a

on the vocal tract and the corresponding speech acoustics can -
be made available to the model. It is the learning procedur
and the computational capacity of the model that determine

what mforrga_tlor;] is andd I|s not extracted from the dra]\ta and eech perception and speech product@e Hickok, 2001,
represented in the model parameters. By contrast, the modg], neuroimaging evidence of the existence of dual-purpose

parameters in a theory-driven forward model are determinegepresentatior)sAs a result of this dual purpose, phonologi-

more explicitly by the modeler. cal representations were hypothesized to be shaped, in part,

Motivation for a data-driven forward modeln the cur- e intersection of acoustic and articulatory structure in
rent modeling work, the data-driven approach was motlvate(gpeech_ The question, then, is, how does the learning that

by two aims. First, while theory-driven forward models have j.crs during the early experiences of speech perception
proven to be useful research tools, they have not yet enableghmpine with the complementary learning that occurs during
the development of natural-sounding articulatory speech synspeech production to form this intersection. One key part of
thesizers. One reason for this shortcoming is that, in gne answer to this question on the approach taken by Plaut
theory-driven forward model, many details of the vocal tractand Kello was that the language learner uses her knowledge
and speech acoustics are purposely abstracted away. It ¢$ the forward mapping from articulation to acoustics as a
presumably these detailamong other factojsthat impart  prigge between learning in speech perception and learning in
the quality of a person's voice. Therefore, one way tospeech production. This knowledge was embodied as a for-
achieve more natural-sounding speech synthesis would be {gard model of the articulatory-acoustic mapping, and the
capture as much detail as possible about the vocal tract affgrward model was learned through simulated babbiseg
speech acoustics for a given spealeeg., see also Blackburn also Perkellet al, 1997; Perkelket al., 2000.

and Young, 2000; Jiangt al, 2002; Rowels, 1999; Shiga The forward model played a relatively minor, but abso-
and King, 2003. The data-driven approach to forward mod- lutely necessary, role in the development of phonological
eling has the potential to capture such details. Relativelyepresentations. It enabled learning on the input side of the
little detail about the vocal tract was available for use in thesystem(i.e., perception and comprehensioo drive learning
current work(see Sec. lll A, but the simulations provided an on the output side of the system. It was not part of the

On the theoretical approach taken by Plaut and Kello
1999, a central factor in the emergence of phonological
epresentations was their dual purpose in supporting both
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mechanism that integrated inputs over time to form phonotations also raises questions about the successes of the mod-
logical representations, nor was it part of the mechanism thatls, especially with respect to the Plaut and Kell®99
generated outputs over time to produce articulatory trajectomodel. The most relevant question for the current discussion
ries. Therefore, the current work is intended only to investi-is the following: does the simulated learning of phonological
gate whether the bridge between perception and productiorepresentations stand as support for Plaut and Kello’s theory
can be based on real speech. The forward model is fairlpf phonological development, or did this success depend cru-
small piece of theory proposed by Plaut and Kell®99, cially on the simplifications in the articulatory and acoustic
but the use of real speech would be a major improvementepresentations? For instance, a major issue in phonological
over the original modeling work. development is how sensitivity to the segmental structure of
In the Plaut and Kell@1999 simulation, the articulatory speech emerges from language experiefecg., see Bern-
and acoustic representations were engineered on the basistardt and Stemberger, 1998; Jusczyk, 19@h the theory
knowledge accumulated over years of phonetics researgbroposed by Plaut and Kello, sensitivity to segmental struc-
(e.g., Ladefoged, 1993For example, articulatory represen- ture is primarily a product of the articulatory and acoustic
tations included tongue height and backness, and acouststructure of speech, and the statistical regularities in the
representations included first through third formant frequenspeech inputs that come from adults and other childogn
cies. A forward mapping from articulatory to acoustic repre-course, neuroanatomy, neurophysiology, and mechanisms of
sentations was also engineered on the basis of phonetitsarning also play their respective rolesiowever, in the
theory and research, and the task of the forward model wasimulation reported by Plaut and Kello, segmental structure
to learn this mapping. Thus, the engineered forward mappingvas partially engineered into the articulatory and acoustic
was clearly theory-driven in that it was not derived directly representations. This engineering may have been key to the
from measurements of speech. As a similar examplelearning of phonological representations in that simulation.
Guenther's DIVA modelso named because it maps orosen-Thus, the simulation results left open the question of whether
sory Directions Into Velocities of Articulatoy®f speech ac- phonological representations can be learned from articula-
quisition and production also includes a forward model thatory and acoustic representations in which no segmental
is based on engineered representations of speech articulstructure is imposed.
tions and acoustic§Guenther, 1994, 1995; Guenthet al,, The forward model reported here is a first step toward
1998. addressing these and other questions. The articulatory inputs
The simulations reported by Plaut and Kell®99 and  and acoustic outputs used in the current model were derived
Guentheir(1994; Guenther, 1995; Guenthatral,, 1998 have  directly from articulatory and acoustic recordings of a female
been successful in accounting for certain phenomena ispeaker of British English. The procedures for pre-
speech acquisition and production. For instance, the Playdrocessing the recordings were designed such that segmental
and Kello model was able to learn representations that funcstructure was not pre-extracted from the data streams. This is
tioned to support the tasks of spoken word comprehensiomot to say that segmental structure is unimportant to speech;
production, and imitation. The DIVA model has accounteda key test of any model of phonological development would
for phenomena of coarticulation, motor equivalence, ando be show that it is sensitive to the segmental structure of
speaking ratéamong others Part of what made these suc- speech in the same way that humans are. The point here is
cesses possible were the simplifying assumptions of théhat a complete model would need to explaiow the lan-
models. Most relevant to the current discussion are the simguage learner becomes sensitive to segmental structure in the
plifications that were made in the articulatory and acoustimative language, given only the raw speech signal as input.
representations, and in the forward mapping between thenThe forward models reported here do not explain this aspect
These simplifications made the models tractable, and thegf learning; on the Plaut and Kelld999 theory, the learn-
removed extraneous details that would have made it difficuling of segmental structure is explained by other mechanisms.
to relate simulation results to the theoretical principles emWhat the current work provides is a necessary first step to-
bodied in the models. ward building a more complete model of phonological de-
While recognizing the value of theory-driven models, it velopment based on real speech.
is fair to ask whether the models offered by Plaut and Kello  In addition to this long-term purpose, the current work
(1999 and Guenthe(1994; Guenther, 1995; Guenthetral.,, also served two more immediate purposes. One immediate
1998 would scale to handle all of the complexities inherentpurpose was to test the viability of a data-driven articulatory
in the development and processing of real speech. The simgpeech synthesizer. To the extent that the reported forward
lations are meant to serve as evidence for theories of speechodels are successful, they will output acoustics that are
acquisition and speech production. However, it is uncleaidentical to that of the targets derived from the speaker.
how the models would perform when implemented with However, it is important to note that a forward model does
more veridical representations of speech articulations andot constitute a speech synthesizer because it does not
acoustics. If the models were to fail under more veridicalspecify how to control the articulatory dimensiofia the
conditions, one would have to ask whether the theories wereurrent work, articulatory states always came from the
fundamentally flawed in some or way, or whether the failuresspeech databaseNonetheless, a data-driven forward model
were only due to shortcomings in the computational machinthat can output natural-sounding speech may be an important
ery. step toward building a complete, data-driven, articulatory
The use of simplified articulatory and acoustic represenspeech synthesizer.
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The second immediate purpose of the current work washe tongue dorsunfapproximately 2—3 cm posterior to the
to generate a lower-bound estimate on the amount of phdengue blade sensprand the soft palatdapproximately
netic information that is captured by the articulatory record-10—20 mm from the edge of the hard paja{eX,Y] posi-
ings in the MOCHA speech database. The task of the fortions were recorded from each sensor, sampled at 500 Hz.
ward models reported herein was to generate the acoustic The positions of these eight sensors were used to calcu-
outputs of articulatory inputs as veridically as possible, dedate nine[X,Y] pairs of articulatory dimensions, as follows.
fined as the minimization of squared error. If the modelsOne[X,Y] pair coded the position of the lower incis@re.,
could perform this task perfectly, it would mean that thejaw movement relative to the upper incisor. This relative
articulatory recordings had captured enough informatiorcoding removed head movement because the position of the
about the vocal tract to generate all of the acoustic detail iupper incisor sensor was fixed relative to the head. Two
the recordings of the speaker’s voice. There was no expect@x,Y] pairs coded the positions of the upper and lower lips,
tion of perfection, but any phonetic information conveyed byrelative to the positions of the upper and lower incisors, re-
the models had to originate in the articulatory recordingsspectively. These pairs coded lip movement independent of
Therefore, the forward models provided a lower bound orhead and jaw movement. OfX,Y] pair coded movement
the phonetic information available in the articulatory record-of the soft palate relative to the upper incisor. T, Y]
ings. The forward models could not provide an upper boundgpairs coded the overall position of the tongue as the average
because it is possible that the articulatory recordings conef the three tongue sensors, one pair in absolute coordinates,
tained more phonetic information than measured in theand one pair relative to the upper incisor. Finally, three
acoustic outputs; there is no guarantee that all phonetic irFx, Y] pairs coded each of the three tongue positions, relative
formation was extracted by the models, or conveyed by oufo the absolute average tongue position. These three pairs

measures of phonetic information. coded local movements of the individual sensors indepen-
dent of more global movements of the entire tongue.
Il. MODEL EPG sensors were placed in 48 normalized positions on

Three forward models were trained on the recordings fot€ hard palate defined by landmarks on the upper maxilla.
one speaker in the MOCHA database. Taile model was ~Contact between the tongue and each EPG sefisoary
trained on all 460 sentences recorded by the speaker, tf{@/U€s was sampled at 200 Hz. LYN recordings provided
evenmodel was trained on the even-numbered sentence¥0iCing information at the larynx as a wave form sampled 16
and theodd model was trained on the odd-numbered senXHZ, stored with 16 bit precision, and low-pass filtered at
tences. The odd/even split was arbitrary, and was used to te$p0 Hz. Acoustic recordings were also sampled at 16 kHz
the generalization of the learned model parameters to inpu@Nd stored with 16 bit precision, but they were low-pass
that were not presented during training. Specifically, the oddfiltered at 8 kHz instead of 400 Hz.
numbered sentences were used to test generalization of the The acoustic and LYN recordings were transformed
even model, and vice versa for the odd model. Tests of gerffom the time domain to the frequency domain with the use
eralization served to ensure that the model parameters capf Matlab's fast Fourier transforr=FT) routine. FFTs were
tured the general relationship of the vocal tract and the recalculated over hamming windows 64 ms wide, taken at 32
sulting acoustics, rather than individual input/output pairings™s intervals. We explored a range of widths and found 64 ms

or some unknown peculiarities in the speech database. 0 produce the most intelligible reconstructed speech signal
(see Sec. I). Given the sample rate of 16 kHz, this proce-

dure resulted in 511 frequency bins of log magnitude per
Speech tokens were drawn from one female speaker ofindow after discarding the dc offset. Phase information in
British English(subject ID “fsew,” southern diale¢tin the  the acoustic signal was discarded in the FFT conversion be-
MOCHA speech database, recorded at the Edinburgh speecause the articulatory recordings were not expected to carry
production recording facility. The speech corpus consisted ophase informatiorithe loss of phase information was partly
one token each of 460 phonetically compact sentences deesponsible for the need for relatively wide processing win-
signed to provide a good coverage of pairs of phones, witllows. Only the lower 25 bins were used for the LYN re-
extra occurrences of phonetic contexts thought to be eithegordings because the signal was low-pass filtered at 400 Hz.
difficult or of particular interest. The corpus included all 450 The rear 24 EPG sensors were discarded because they were
phonetically compact TIMIT(sx) sentences, plus ten addi- not activated in the recordings for the chosen speaker.
tional sentences designed to include phonetic pairs and con- For each dimension in the acoustic, EMA, and LYN data
texts that are particular to British English. streams, the observed values across the entire data set were
Articulatory recordings in the MOCHA database con-rank-ordered, and the smallest 100 values were set equal to
sists of electromagnetic articulograpEMA), electropalato- the 100th smallest value, and the largest 100 values were set
graph(EPG), and laryngograplLYN) recordings. The EMA equal to the 100th largest value. This procedure normalized
recordings consisted of eight sensors placed in the midvery extreme outliers in each dimension of the data streams,
sagittal plane of the vocal tract, attached to the followingthereby restricting their range. The restricted range for each
locations: the vermilion border of the upper lip, the vermil- dimension was then normalized [0,1]. This normalization
ion border of the lower lip, the upper incisor, the lower inci- procedure was not necessary for the EPG data because those
sor, the tongue tig5—10 mm from the tip the tongue blade dimensions were already normalized in the rap@d]. Fi-
(approximately 2—3 cm posterior to the tongue tip sensor nally, the EMA and EPG data streams were down-sampled to

A. Speech database and pre-processing

J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 C. T. Kello and D. C. Plaut: Articulatory-acoustic forward modeling 2357



31.25 Hz, and aligned with the FFT windows calculated over Articulatory
the acoustic and LYN data streams. States

100 -_
B. Articulatory and acoustic representations Current Hidden Units e
oo i e e
Outputs of the forward models were vectors of real num-

bers in the rang¢0,1] that represented the acoustic power
spectrum at a given 64 ms slice of time. The vectors were
1022 dimensions in size. For each of the 511 FFT bins, on€lG. 1. Architecture of the forward models. Arrows indicate full connectiv-
dimension represented the values in the raf®6.5, and ity between groups of processing units.

another dimension represented values in the rdoge1].

Values outside of a given unit's range were set t0 zero on thafe_synaptic units. The activation values of the input units
unit. This output for_mat allowed for better resolution in the_were set directly equal to the articulatory representation at a
model’s representations, and separate parameters for Iearmag,en point in time in one of the trained sentence tokées

between the upper and lower rangée., separate sets of ;omnased of previous, current, and next articulatory states as
connection weights fed into the upper-range and lower-ranggescrined earligr Every articulatory input unit was con-
output units; see Sec. III)C nected to every acoustic output ufiie., full connectivity.

Inputs to the forward model were vectors of real numM-|n aqgition, articulatory inputs were fully connected to the
bers in the rang0, 1] that represented the previol8 msin  piggen units, and the hidden units were fully connected to

the pas), current, and next32 ms in the futurgarticulatory  he output units. Direct connections between inputs and out-
states, relative to the acoustic outputs. The input Vec"o?uts were included to increase the rate of learning by facili-
were 588 dimensions in size, with one third each representying the extraction of any linear relationships between the
ing the previous, current, and next articulatory states. Eachticulatory and acoustic dimensions. The hidden units

point in time consisted of 72 dimensions dedicated to EMAseyeq to capture nonlinear relationships between the input
positions, 24 dimensions dedicated to EPG contact, and 10,4 oytput dimensions, although they were free to capture
dimensions dedicated to FFT values from the LYN recordyineqr relationships as well. A total of 100 hidden units was

ings. The EPG dimensions directly coded the averag@nssen on the basis of trial and error; pilot work indicated

amount of tongue contact in & given slice of time for each ofy,5; model performance was worse with fewer hidden units,
the front 24 EPG sensors. Four dimensions were assigned 19,4 no better with more hidden units.

each of the 18 EMA dimension@.e., nine pairs of X,Y]
positiong, and each of the 25 bins of FFT magnitude to
400 Hz in frequencyfor the LYN recordings. For each qua-
druple assigned to value one dimension codex directly,
one coded the value-1x, one coded thex values in the

At the start of training, the weights on all connections in
the network were drawn randomly with replacement from a
rectangular distribution in the range-0.1,0.1. Weights
were learned via the backpropagation of error signals gener-
c ated on the outputs unitRumelhart, Hinton, and Williams,
lower range[0,0.5, and one coded values in the upper 1ggg |n particular, time slices from the sentence tokens
range{0.5, 1. Analogous to the output format, the split range \yere presented to the network in batches of 100, sampled at
format provided the model with a separate set of parameters,,qom from the training set. For each time slice, the activa-
for the lower and upper ranges of input values. To completig, yalues of the input units were set to the corresponding
ment, thex| 1—x inverse coding provided two sets of param- 4ty latory representation, and those activation values were
eters that spanned the full range of input values. The INVersg onagated forward through the network connections to gen-

coding was used to ensure that learning occurred on evelyaie g pattern of activation on the output units. For each
training example, for each dimension, regardless of each diioyt unit, squared error was calculated between the unit's

mension’s value. In backpropagation, no learning will occurycivation value, and its target activation, which was deter-

on a unit's sending weights when the activation value of thafyineq by the acoustic representation for the time slice in

unit is zero. Thus, thec and 1~x units served to provide g estion. The error signals were then backpropagated along
model parameters learned on either side of each dimensiogne network connections to calculate weight derivatives.

Each weight’s derivatives were summed across each batch of
C. Forward model training and results 100 training example§.e., time slices After each batch, the

All three forward models had the neural network archi_summed derivatives were used to update each weight accord-

tecture depicted in Fig. 1. Each model consisted of 588 inpu'lng to
units, 1022 output units, and 100 hidden units. Acoustic rep-
resentations corresponded to patterns of activity over the out- [b]_
put units, and articulatory representations corresponded to 4
patterns of activity over the input units. Patterns of activity

over the hidden units corresponded to internal representavhere y was the overall network learning ratdecreased
tions that were learned over the course of trainisge the from 5e—4 to 5e—5 over the course of trainingz;; was a
following). The activation value for each hidden unit and weight-specific learning rate; was a momentum terifiixed
each output unit was calculated as the sigmoid of the doat 0.8, andb was theNth batch over the course of training.
product of the unit's incoming weights and the outputs of theWeight-specific learning rates were adjusted on the basis of

JE )
ﬂNﬂijaT”+a(AWi[jb ), 1)
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0.035

pitch of the speaker’s voice. The peak at about 4750 Hz
might have been due to the models’ inability to determine the
spectral details of acoustic energy generated by fricative and
plosive speech soundbut this conjecture needs further in-
vestigation. The reasons for the particular characteristics of
the rise in error up to its peak, and its drop off after the peak,
are currently unknown.

The error scores gave a detailed picture of which fre-
Odd model, odd sentences 4750 Hz
Even model, even sentences quency bands were processed more or less accurately by the
models, but these scores do not give an interpretable measure
of intelligibility of the target and model tokens. To provide a
more standard measure, an energy histogram meHael

Odd model, even sentences
Even model, odd sentences

0.03
0.025

0.02 PAll model, all sentencesg 4

0.015

0.01

Mean Squared Error per Time Slice

0.005

15Hz Frequency 8000 Hz sch, 199% was used to estimate the signal-to-noise ratio
FIG. 2. Mean squared error per output unit per time slice, as a function O{SNR) in the target and model tokens, as well as in the origi-
frequency for theall model, theevenmodel, and thedd model. nal, unprocessed tokens. The mean SNR for each category of

tokens was as follows: 28.2 dB for the original tokens, 24.4
dB for the target tokens, 25.8 dB for tlal model tokens,
26.0 for theevenmodel tokens, and 25.7 dB for thmdd
model tokens. These means show that, although the original
contained a total of 41 791 slices of time to be trained. ThéOkenS_ were d|st|ngwshe_d from the processed ones, the en-
ergy histogram method did not reflect the overall differences

evenmodel contained 20 794 slices, and tdd model con- . -
tained 20997 slices. Each model was trained on 100 0ol €or scores plotted in Fig. 2. A SNR measure that uses the

batches of training examples, which is about the point afaroet signal as a t_)aseline_WOl_JId be more appropriate, but the
which the reduction in error became miniscule. All threeremoval of phase information in the target and model tokens

models were stopped at exactly 100000 batches to contrtﬂro.hibitecj S,UCh ameasure. To allow 'othe.r rese archers to ex-
for amount of training. The training sets did not appear to periment with various measures of |nF§II|g|b|I|ty, the wave
overfit because, for the odd and even models, error on th@rms all of the stimuli in all four conditions can be down-
untrained sentences decreased throughout training. At tHgaded at hitp://archlab.gmu.edwkello/forward-

end of training, the average squared error between the targ pdels. html. - —
and outputs was calculated per frequency per time slice. The error scores and SNRs are quantitative, objective

These averages are shown in Fig. 2 for each of the threr%:easures of intelligibility. A more qualitative way to assess

forward models, separated by sentence tyqad- or even- tt? modeling rc(jasults Is to t\f?ew speptrct)gramst of the tar?(tart]
numbered As can be seen, the mean squared error nevef erances, and compareé them against spectrograms ot the

exceeded 0.035 by the end of training. By comparison, meaﬁorresponding model outputs. In Figs. 3 and 4, spectrograms

squared error at the beginning of training was 0.193. are sh?wn f(?[r one oddr-wnuLnbered %r.]td qlnef event-hnumbereﬂ
Figure 2 shows that there was a clear rank ordering iﬁ;xf?ntlp € SE? enlce, ea;:h ¢ ogeln ar |trar|y rom the _fpe_ec_

the overall amount of model error. The models trained or] atabase. Al a glance, the model spectrograms are quite simi-
ar to the target spectrograms. Some of the spectral and tem-

half of the sentences in the speech dataliasenand odd o .
modelg produced the least amount of error on their respecporal detalls in the targets appear to he washed out in the

tive training sets, and the most amount of error on sentence@Od?I outputs, tpatr)tlcularlylatbtl)ve 30r?OdHZtW$Ere the ha;r-
outside their training sets. Thal model produced slightly monics appear o be compietely washed out. These spectro-

more error than thevenandodd models for their respective grams are informative visualizations, but ultimately, the for-

training sets, but substantially less error than those model‘é’ﬁrd rpodefls mutgt be astsgssgq b%;l rr)eas;mntg tge r;mount of
for sentences outside their training sets. This rank-orderin onetic information contained in their outputs. such an as-

of error indicates that some learning did not generalize pe2€sSsmentis reported in Sec. lll.
yond the training sets in thedd and evenmodels, and that
error from these models was reduced somewhat by Iearninlél' INTELLIGIBILITY TESTS
that was specialized to the training sets. The error results shown in Fig. 2 provide a quantitative
The pattern of error as a function of frequency wasmeasure of performance for the forward models, and Figs. 3
mostly similar across the different models and training setsand 4 provide a more qualitative measure. However, it is
There was a sharp dip in error at about 250 Hz, followed bydifficult to interpret these measures in terms of the amount of
a fairly steady climb in error to a peak at about 4750 Hz.phonetic information that was captured in the forward map-
Error then dropped to a middling baseline level that wasing learned by the models. To better estimate the phonetic
maintained out to 8000 Hz. This pattern was somewhat difinformation captured in the models, the model outputs and
ferent for theodd andevenmodels tested outside their train- targets were submitted to empirical tests of intelligibility.
ing sets in that, for those models, an extra plateau of erromtelligibility of the targets served as a baseline comparison.
can be seen prior to the peak at about 4750 Hz. The dip a&he percentage of words identified correctly was used as a
250 Hz is due to the fact that the LYN recordings containcoarse measure of the overall amount of phonetic informa-
fairly direct information about acoustic energy around thetion captured by the models, relative to the phonetic infor-

the consistency of weight derivatives across bat¢basobs,
1988.
The 460 sentences in the training set for #llemodel
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FIG. 3. Spectrograms of the target acoustics, and the acoustics output by each of the three model types for an even-numbered sentence tokesjrieright s
shimmers on the ocean.” The outlined region shows where the models can be seen to have lost some of the spectral detail in the target utterance.

mation available in the targets. To provide a rough measureach of the three model types, and one from the target. As
of the kinds of phonetic information that was lost by the noted earlier, some information in the original acoustic re-
models, phoneme confusions were identified in the response®rdings was lost because it was necessary to discard phase

(when possiblg and tabulated. information in the FFT procedure used to generate the acous-
tic targets for the models. Phase information was replaced by
A. Methods inserting random phases into the inverse FFT procedure. Pi-

lot tests indicated that random phases produced more intelli-
_ o _ _ gible wave forms compared with phases fixed at values such
Eight undergraduates participated as listeners in th@gs zero. However, loss of the original phase information

reported being native speakers of American English, none

reported a hearing impairment, and none were familiar with
the TIMIT speech database.

1. Participants

2. Stimuli 3. Procedure

All 460 sentence tokens were passed through each of the Participants were seated in a quiet booth and instructed
three forward models to generate a series of acoustic outputbat they would be listening to grammatically correct and
for each token, and from each model. The Matlab inversesemantically plausible English sentences. For each sentence,
FFT routine was used to convert the acoustic outputs into athey were instructed to transcribe what they heard to the best
acoustic wave form for each sentence token, from eaclf their ability. They were told that some sentences were
model. The same procedure was also applied to the targetgarbled and therefore difficult to hear. They were asked to
resulting in four stimulus tokens for each sentence: one frontype into the computer as many words as they heard for each
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FIG. 4. Spectrograms of the target acoustics, and the acoustics output by each of the three model types for an odd-numbered sentence tokersifisat your r
outdoors on the porch steps.” The outlined region shows where the models can be seen to have lost some of the spectral detail in the target utterance.

sentence, in the order that they heard them, and they wergere transcribed most accurately, with no noticeable differ-
encouraged to guess at words whenever necessary and pesice in accuracies for the even-numbered versus odd-
sible. numbered sentences. There are at least three possible reasons
Stimulus presentation and data collection was controlledvhy the intelligibility of the targets was less than perfdday:
through a graphical user interface, and stimuli were prethe tokens were generated by a speaker of British English,
sented over Sennheiser MH80 headphones at a comfortabtbeit the listeners were speakers of American Engligh,
listening level that was held constant across participantssome of the TIMIT sentences contain words likely to be
Each trial began with the participant clicking on a button tounfamiliar to the participantge.g., “neoclassic,” “Nan,”
listen to the current sentence. Participants were forced ttstatuesque,” etg, and(3) phase information in the original
click on this button three times in order to listen to eachrecordings was lost in the FFT procedure.
sentence three times before responding. Participants typed The graph also shows that accuracy for the outputs of
each response into a text entry field, and clicked on anothehe all model was 11 percentage points lower on average
button to enter the response and begin the next trial. Particthan that for the targets(7)=7.4, p<<0.001. Compared
pants were not given feedback at any time. with the all model, similar levels of accuracy were found for
Participants were given four practice sentences at the
beginning of the experiment, followed by one-fou¢ii5 of _ T o —
the 460 sentence tokens. Tokens were rotated across subjec 100 0Odd Sentences
to cover all 460 sentences evenly, and each sentence aj 9o
peared in two of the four token conditions. The token condi-  so -
tions were rotated across subjects such that each conditio
was sampled an equal number of times.

70

60
50 -

B. Results 40 1

ercent Words Correct

. . 30
All responses were corrected for spelling errors, and ine

the few cases where the participant responded with a homo
phone of the correct word responéeg., responding with ol |
TACKS when the correct word is TA)Xthe homophone was Targets All model Even model 0Odd model
replaced with the correct word. The percentage of words

transcribed correctly for the even-numbered and OddEIG' 5. Mean percent words correct in the intelligibility tests, as a function
of token type(target,all model,evenmodel, orodd mode) and sentence

numbered S.e.ntences is graphed in Fig. 5 for each of the fOLNpe(even—numbered or odd-numbered sentendgrsor bars show standard
token conditions. The graph shows that the target outputSeviations of the subject means.

10
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TABLE I. Counts of phoneme confusions summed across all model condisopme regularity. Confused features were often similar to each

tions and all subjects, with the number of times that each confused phonem@n their respective dimension of confusion; for example, the
appeared in the corpus included as a baseline. Counts were collapsed acr?ss ' ’

order of confusion, and counts under three were not included. eature plosive was Often confused with the fegture affricate,
and both manners of articulation are characterized by a burst

Articulatory release. Beyond these general statements, it is difficult to be

Confusion dimensions confused No. Observed  No. in corpus more specific without results from an experiment aimed

1l Place 9 1279 more directly at phoneme identification. The MOCHA data-

Ip, bl Voicing 6 677 base contained only sentence stimuli, which made it prohibi-

/m, b/ Manner 4 717 tively difficult to conduct a phoneme identification experi-

/n, d/ Manner, nasal 4 1343 ment

n, I/ Nasal, lateral 4 1361 '

Ik, p Place 4 901

/n, m/ Place 4 1301

fj, d/ Place, manner 4 669 IV. DISCUSSION

Ik, h/ Place, manner 4 706 .

Ik, f/ Place, manner 4 797 _ Three neural _network_ models were trained on the

fj, t/ Place, manner, voicing 4 1008 articulatory-acoustic mapping for one speaker in the

In, 1/ Place, nasal 4 1548 MOCHA speech database. Results indicated that this map-

;‘lz 3’ E:acev voicing ; 126‘2 ping was well-approximated in the models. Spectrograms

e Place. manner voicing 5 573 and analyses of model error showed that the acoustic outputs

Ie, il Voicing ' 3 253 in lower frequency rangébelow 2000 Hx closely matched

/d, t/ \oicing 3 1395 the target outputs, whereas acoustic outputs in the upper fre-

guency rangéabove 3000 Hegwere less accurate. Intelligi-
bility tests showed that listeners could identify a large per-
the evenmodel tested on the even-numbered sentences armentage of words in sentences that were generated by passing
the odd model tested on the odd-numbered sentences. Theske recorded articulatory trajectories through the models.
model results are reported primarily as points of comparisomhese tests also showed that the model parameters general-
for the tests of generalization. In particular, accuracy was 2@zed, to some degree, to novel articulatory inputs. On the one
percentage points lower for thevenmodel tested on the hand, intelligibility of the untrained sentencé$1% words
odd-numbered sentences, compared with the same modebrrect on averagedemonstrated that the model learned
tested on the even-numbered sentent@s),=3.5, p<0.05. something about the general relationship between articula-
Similarly, accuracy was 18 percentage points lower for theéory and acoustic parameters for the speaker’s vocal tract. On
oddmodel tested on the even-numbered sentences, compargee other hand, reduced intelligibility of the untrained sen-
with the same model tested on the odd-numbered sentencasnces compared with the trained senter(8d86 words cor-
t(6)=6.1, p<0.001. rect on averageindicated that some aspects of the general

To provide a rough measure of the kinds of phoneticarticulatory-acoustic relationship were not learned suffi-
information that were lost by the models, responses to altiently.
model outputs were inspected for phoneme confusions. Re- The intelligibility tests provided coarse measures of
sponses were identified in which a target word in the senphonetic information in that phoneme confusions provided
tence was clearly replaced with a different word in the re-only a rough measure of the kinds of phonetic information
sponse. On this strict criterion, replacements were identifiethat were and were not contained in the acoustic outputs.
for only 57% of the responses with errors. The difficulty wasOther measures of phonetic information, such as those de-
that participants often left target words out of their responsesjved from tests of phoneme identificatide.g., Bernstein,
or occasionally inserted words that were not in the targeDemorest, and Tucker, 20Q0would provide more detail
sentences. Deletions and insertions often made it difficult t@bout phonetic information in the model outputs. Unfortu-
align a given response with its target. To avoid experimentenately, only the sentence recordings were available for intel-
bias in alignment decisions, no word replacements werdigibility tests, and it would have been difficult to specifically
identified when the alignment was ambiguous. test phoneme identification with sentence stimuli.

The counts of phoneme confusions are shown in Table I.  Nonetheless, the results in hand demonstrate that the for-
These counts are collapsed across confusion d@r@er pho-  ward mapping from articulations to acoustics can be learned,
neme A replaced with phoneme B, or B with,Aand only  at least to a reasonable extent, via a heuristic of gradient
counts greater than two are shown. In the full set of confudescent(i.e., backpropagationin an acoustic error space.
sions, vowels were never confused with consonants, and dathey also place a lower bound on the amount of phonetic
the few vowel—vowel confusions that were identified, noinformation captured by the articulatory recordings in the
particular vowel—vowel confusion occurred more than twice. MOCHA database. In particular, articulatory recordings were
With respect to consonants, the phoneme péjrg &nd b, comprised of 8 mid-sagittqlX, Y] positions at key locations
b/ were confused most often. This was true in terms of rawin the vocal tract, 24 positions of tongue contact with the
counts, and counts relative to the number of times these phdrard palate, and FFTs of the acoustic energy generated at the
nemes appeared in the corpus. Otherwise, features that derynx. These articulatory recordings were sufficient to gen-
note place of articulation were confused most often, but feaerate much of the spectral and temporal information in the
tures denoting voicing and manner were also confused withesulting speech acoustics. The phonetic information in the
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models’ outputs had to come from the articulatory inputssible component of a full-scale model of speech acquisition
because the models were data-driven, i.e., they did not corand production. As argued in Sec. I, it would be informative
tain anya priori information about speech. to test whether models of speech acquisition and production
In fact, it is possible that the articulatory recordings ac-can handle the complexities of real speech. The incorpora-
tually contained more phonetic information than indicated bytion of a data-driven forward model, similar to the models
the reported models. Some information was lost in preteported here, would be a significant step toward such a test.
processing the articulatory recordings in order to formatHowever, some difficult problems would need to be ad-
them for the model¢e.g., phase information was lost in the dressed before a complete model could be implemented.
FFT procedurg and some of this lost information may have For instance, the problem of articulatory control that
been phonetic in nature. Even if no information was lost inconfronts the development of articulatory speech synthesiz-
pre-processing, it is possible that the mapping defined by thers would also confront the development of models of speech
model parameter@&onnection weighjsdid not capture all of ~acquisition and production. Guenther’s DIVA mod&uen-
the phonetic information in the articulatory inputs. This ther, 1994, 1995; Guenthet al, 1998 has accounted for a
shortcoming can occur because of an inadequacy in backwmber of phenomena that are relevant to the issue of articu-
propagation, in the use of sigmoidal processing units, or ifatory control, but it is currently unknown whether the DIVA
the representational scheme used on the inputs or output®odel would scale to handle the control of a real human
Gradient descent learning can settle into a local minimum irvocal tract. The Plaut and Kellg1999 approach is well-
error. While any differentiable function can be approximatedsuited to forward models such as the ones reported here,
using sigmoidal hidden unit€Cybenko, 1989 some func- given that both share the same mechanisms of neural net-
tions are better suited than others for this particular basi#/ork learning and processing. However, it is currently un-
function, and the generalization of learning can be influencefnown whether such mechanisms are capable of learning
by the choice of activation functiofRumelhartet al, 1995.  phonological representations on the basis of real speech in-
Finally, it is well known that the design of input and output Put. Another issue that would have to be confronted is vari-
representations is critical to learning and performance in aibility in the speech signdé.g., see Perkell and Klatt, 1986;
neural networkge.g., Plauet al, 1996. Thus, it is possible  Pisoni, 1981 For instance, on any given occasion, the
that an alternate method of modeling would have resulted i§Peech signal that corresponds to a given word will be
a forward mapping that captured more phonetic informatiorshaped by factors such as the linguistic and nonlinguistic
than the models reported herein. context, and the talker’s dialect and voice quality. The result-
One reason to improve the fidelity of the current forward@nt variability poses a significant challenge for any effort to
models is for the purpose of an articulatory speech S,ymhebuild a computational model of speech acquisition and pro-
sizer. Acoustic outputs of the reported models were naturaiduction. The modeling work reported here is one step toward
sounding in that they captured the quality of the Speaker’i;;neeting.thes_e and other challenges inherent to the research
voice, although limitations of the models caused their out-2nd engineering of speech.
puts to sound as if they were masked by noise of some kind.
Thus, the models might contribute to the development of es\cKNOWLEDGMENTS
natural-sounding articulatory synthesizer if their fidelity was )
improved. However, a formidable hurdle in such an effort ~ We would like to thank Brandon Beltz, Laura Leach,
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