
A neural network model of the articulatory-acoustic forward
mapping trained on recordings of articulatory parameters

Christopher T. Kelloa)

Department of Psychology, George Mason University, Fairfax, Virginia 22030

David C. Plaut
Department of Psychology, Center for the Neural Basis of Cognition, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213

~Received 2 October 2003; revised 24 February 2004; accepted 1 March 2004!

Three neural network models were trained on the forward mapping from articulatory positions to
acoustic outputs for a single speaker of the Edinburgh multi-channel articulatory speech database.
The model parameters~i.e., connection weights! were learned via the backpropagation of error
signals generated by the difference between acoustic outputs of the models, and their acoustic
targets. Efficacy of the trained models was assessed by subjecting the models’ acoustic outputs to
speech intelligibility tests. The results of these tests showed that enough phonetic information was
captured by the models to support rates of word identification as high as 84%, approaching an
identification rate of 92% for the actual target stimuli. These forward models could serve as one
component of a data-driven articulatory synthesizer. The models also provide the first step toward
building a model of spoken word acquisition and phonological development trained on real speech.
© 2004 Acoustical Society of America.@DOI: 10.1121/1.1715112#
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I. INTRODUCTION

A necessary component of any complete model
speech acquisition or speech production is the physical r
tionship between the shape of the vocal tract, and the ac
tic energy emitted from the vocal tract. This relationship
often referred to as theforward mapping from articulatory
states to acoustic outputs, whereas theinverse mapping
would recover articulatory states from the speech signal~Jor-
dan and Rumelhart, 1992!. The forward mapping is integra
to speech production because the primary proximal stimu
used by the listener is the acoustic speech signal. There
to produce comprehensible speech, the talker must some
take into account the forward mapping from articulato
commands to acoustic outputs.

The articulatory-acoustic mapping has been studied
marily for two purposes. One is to better understand h
speech is perceived and produced by humans~e.g., Rubin,
Baer, and Mermelstein, 1981!, and the other is to develo
articulatory-based techniques for automatic speech reco
tion ~e.g., Blackburn and Young, 2000a! and speech synthe
sis ~e.g., Greenwood, Goodyear, and Martin, 1992!. In the
service of these purposes, computational models have
developed to simulate the forward mapping from articulat
to acoustics~e.g., Baeret al., 1991; Beautemps, Badin, an
Laboissiere, 1995!. These forward models have been bas
upon articulatory and acoustic dimensions that are know
convey phonetic information, and upon physical princip
of the vocal tract. For instance, place of contact between
tongue and the upper surface of the oral cavity is an art
latory dimension known to play a role in distinguishing som
consonants from each other~Ladefoged, 1993!. Formant fre-

a!Electronic mail: ckello@gmu.edu
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quencies are acoustic dimensions known to play a role
distinguishing vowels from each other. In forward models
the articulatory-acoustic mapping, functions have been
rived in order to relate these and other articulatory a
acoustic dimensions to a physical model of the vocal tr
~e.g., Baeret al., 1991; Goodyear, 2000!. Models of the vo-
cal tract used for this purpose are commonly divided into
source of acoustic energy, and a filter through which
source is passed. One of the best known examples is
Kelly and Lochbaum~1962! model of the vocal tract in
which the filter is modeled as series of tubes with varyi
lengths and diameters.

Most forward models developed thus far can be thou
of as theory-drivenbecause they are, in large part, deriv
from physical principles of the vocal tract~for an exception
in automatic speech recognition, see Blackburn and You
2000a!. These theory-driven models have served as valua
research tools for relating the underlying theories to emp
cal data on speech production. The theory-driven appro
has also proven instrumental in the development of articu
tory speech synthesizers because it reduces the complex
the vocal tract down to a manageable number of function

Here we present a forward model of the articulato
acoustic mapping that was thoroughlydata-drivenby design.
The model was an artificial neural network trained on t
articulatory and acoustic recordings from one speaker in
multi-channel articulatory ~MOCHA! speech databas
~Wrench and Hardcastle, 2000!, recorded at the Edinburgh
speech production recording facility. Inputs to the mod
were electromagnetic articulograph~EMA!, electropalato-
graph ~EPG!, and laryngograph~LYG! measurements, eac
windowed over 64 ms slices of time. The output of the mo
was a power spectrum of the speech acoustics at the cent
each 64 ms slice. The inputs and outputs were coded in
04/116(4)/2354/11/$20.00 © 2004 Acoustical Society of America
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model as patterns of activity over sets of connectionist p
cessing units. The mapping from inputs to outputs was g
erned by a single set of weights on the connections betw
input and output units, some of which were mediated
hidden units~see Sec. II!. Thus, a single, unified set of mode
parameters had to represent the entire mapping from ar
latory inputs to acoustic outputs. The weights were de
mined by gradient descent learning, which was driven
minimize error between acoustic outputs and their co
sponding targets. Acoustic targets were derived from
acoustic recordings.

The model was purely data-driven in that values for
model parameters~i.e., the weights! were learned solely on
the basis of articulatory and acoustic data from recor
speech tokens. In other words, the parameters were na
priori set on the basis of physical principles of the voc
tract. Moreover, the articulatory and acoustic dimensio
were ‘‘raw’’ in the sense that they did not directly code a
ticulatory or acoustic features known to convey phonetic
formation. For instance, articulatory features such as plac
manner of articulation were not extracteda priori from the
articulatory recordings, nor were acoustic features such
formant frequencies. Instead, the articulatory and acou
data streams were presented to the model in a largely unp
essed format. It is true that some assumptions were built
the model architecture, e.g., that acoustic states could be
termined on the basis of a certain window of articulato
data, and that acoustic targets are unimodal~see Sec. II!.
However, these assumptions were minimal, and in so
cases, they were forced by constraints of the articulatory
cordings.

The data-driven approach to forward modeling is diffe
ent from the theory-driven approach in that all empirical d
on the vocal tract and the corresponding speech acoustics
be made available to the model. It is the learning proced
and the computational capacity of the model that determ
what information is and is not extracted from the data a
represented in the model parameters. By contrast, the m
parameters in a theory-driven forward model are determi
more explicitly by the modeler.

Motivation for a data-driven forward model. In the cur-
rent modeling work, the data-driven approach was motiva
by two aims. First, while theory-driven forward models ha
proven to be useful research tools, they have not yet ena
the development of natural-sounding articulatory speech s
thesizers. One reason for this shortcoming is that, in
theory-driven forward model, many details of the vocal tra
and speech acoustics are purposely abstracted away.
presumably these details~among other factors! that impart
the quality of a person’s voice. Therefore, one way
achieve more natural-sounding speech synthesis would b
capture as much detail as possible about the vocal tract
speech acoustics for a given speaker~e.g., see also Blackbur
and Young, 2000; Jianget al., 2002; Rowels, 1999; Shig
and King, 2003!. The data-driven approach to forward mo
eling has the potential to capture such details. Relativ
little detail about the vocal tract was available for use in
current work~see Sec. III A!, but the simulations provided a
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 C. T
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initial test of the viability of a data-driven articulatory spee
synthesizer.

The second aim of the current work was to take a fi
step toward building a computational model of phonologi
development. A fundamental question in research on spe
acquisition is how does the infant language learner acq
knowledge about the phonological structure of his or h
language. Moreover, how is that knowledge represented
the mind and brain of the learner, and then used in langu
tasks such as spoken word comprehension and produc
In recent years, computational models of speech acquisi
and production have been developed as tools for explo
and testing the underlying theories~Bailly, 1997; Guenther,
1994, 1995; Guenther, Hampson, and Johnson, 1998; P
and Kello, 1999!. An integral component of these models
the simulation of babbling and early attempts at the prod
tion of spoken words. The forward mapping from articul
tion to acoustics is essential for such simulations.

The forward model reported here is planned to be o
component of a computational model of spoken word acq
sition and processing. Plaut and Kello~1999! presented a
connectionist model of spoken word acquisition and proce
ing in which distributed representations were learned in
service of speech tasks. The central hypothesis tested in
model was that a learned level of representation exists to~1!
integrate the speech signal over word-sized units,~2! gener-
ate articulatory trajectories over word-sized units, and~3!
map between spoken word forms and their meanings. T
level of representation was termed ‘‘phonology’’ because
structure was hypothesized to be phonological in nature
virtue of the three core speech tasks that it supported. T
the model was aimed at simulating how phonological rep
sentations emerge over the course of spoken word acq
tion.

On the theoretical approach taken by Plaut and Ke
~1999!, a central factor in the emergence of phonologic
representations was their dual purpose in supporting b
speech perception and speech production~see Hickok, 2001,
for neuroimaging evidence of the existence of dual-purp
representations!. As a result of this dual purpose, phonolog
cal representations were hypothesized to be shaped, in
by the intersection of acoustic and articulatory structure
speech. The question, then, is, how does the learning
occurs during the early experiences of speech percep
combine with the complementary learning that occurs dur
speech production to form this intersection. One key par
the answer to this question on the approach taken by P
and Kello was that the language learner uses her knowle
of the forward mapping from articulation to acoustics as
bridge between learning in speech perception and learnin
speech production. This knowledge was embodied as a
ward model of the articulatory-acoustic mapping, and
forward model was learned through simulated babbling~see
also Perkellet al., 1997; Perkellet al., 2000!.

The forward model played a relatively minor, but abs
lutely necessary, role in the development of phonologi
representations. It enabled learning on the input side of
system~i.e., perception and comprehension! to drive learning
on the output side of the system. It was not part of t
2355. Kello and D. C. Plaut: Articulatory-acoustic forward modeling
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mechanism that integrated inputs over time to form pho
logical representations, nor was it part of the mechanism
generated outputs over time to produce articulatory traje
ries. Therefore, the current work is intended only to inve
gate whether the bridge between perception and produc
can be based on real speech. The forward model is fa
small piece of theory proposed by Plaut and Kello~1999!,
but the use of real speech would be a major improvem
over the original modeling work.

In the Plaut and Kello~1999! simulation, the articulatory
and acoustic representations were engineered on the ba
knowledge accumulated over years of phonetics rese
~e.g., Ladefoged, 1993!. For example, articulatory represe
tations included tongue height and backness, and aco
representations included first through third formant frequ
cies. A forward mapping from articulatory to acoustic rep
sentations was also engineered on the basis of phon
theory and research, and the task of the forward model
to learn this mapping. Thus, the engineered forward mapp
was clearly theory-driven in that it was not derived direc
from measurements of speech. As a similar exam
Guenther’s DIVA model~so named because it maps orose
sory Directions Into Velocities of Articulators! of speech ac-
quisition and production also includes a forward model t
is based on engineered representations of speech arti
tions and acoustics~Guenther, 1994, 1995; Guentheret al.,
1998!.

The simulations reported by Plaut and Kello~1999! and
Guenther~1994; Guenther, 1995; Guentheret al., 1998! have
been successful in accounting for certain phenomena
speech acquisition and production. For instance, the P
and Kello model was able to learn representations that fu
tioned to support the tasks of spoken word comprehens
production, and imitation. The DIVA model has account
for phenomena of coarticulation, motor equivalence, a
speaking rate~among others!. Part of what made these su
cesses possible were the simplifying assumptions of
models. Most relevant to the current discussion are the s
plifications that were made in the articulatory and acou
representations, and in the forward mapping between th
These simplifications made the models tractable, and t
removed extraneous details that would have made it diffi
to relate simulation results to the theoretical principles e
bodied in the models.

While recognizing the value of theory-driven models,
is fair to ask whether the models offered by Plaut and Ke
~1999! and Guenther~1994; Guenther, 1995; Guentheret al.,
1998! would scale to handle all of the complexities inhere
in the development and processing of real speech. The s
lations are meant to serve as evidence for theories of sp
acquisition and speech production. However, it is uncl
how the models would perform when implemented w
more veridical representations of speech articulations
acoustics. If the models were to fail under more veridi
conditions, one would have to ask whether the theories w
fundamentally flawed in some or way, or whether the failu
were only due to shortcomings in the computational mach
ery.

The use of simplified articulatory and acoustic repres
2356 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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tations also raises questions about the successes of the
els, especially with respect to the Plaut and Kello~1999!
model. The most relevant question for the current discuss
is the following: does the simulated learning of phonologic
representations stand as support for Plaut and Kello’s the
of phonological development, or did this success depend
cially on the simplifications in the articulatory and acous
representations? For instance, a major issue in phonolog
development is how sensitivity to the segmental structure
speech emerges from language experience~e.g., see Bern-
hardt and Stemberger, 1998; Jusczyk, 1997!. On the theory
proposed by Plaut and Kello, sensitivity to segmental str
ture is primarily a product of the articulatory and acous
structure of speech, and the statistical regularities in
speech inputs that come from adults and other children~of
course, neuroanatomy, neurophysiology, and mechanism
learning also play their respective roles!. However, in the
simulation reported by Plaut and Kello, segmental struct
was partially engineered into the articulatory and acou
representations. This engineering may have been key to
learning of phonological representations in that simulati
Thus, the simulation results left open the question of whet
phonological representations can be learned from artic
tory and acoustic representations in which no segme
structure is imposed.

The forward model reported here is a first step towa
addressing these and other questions. The articulatory in
and acoustic outputs used in the current model were der
directly from articulatory and acoustic recordings of a fem
speaker of British English. The procedures for pr
processing the recordings were designed such that segm
structure was not pre-extracted from the data streams. Th
not to say that segmental structure is unimportant to spe
a key test of any model of phonological development wo
to be show that it is sensitive to the segmental structure
speech in the same way that humans are. The point he
that a complete model would need to explainhow the lan-
guage learner becomes sensitive to segmental structure i
native language, given only the raw speech signal as in
The forward models reported here do not explain this asp
of learning; on the Plaut and Kello~1999! theory, the learn-
ing of segmental structure is explained by other mechanis
What the current work provides is a necessary first step
ward building a more complete model of phonological d
velopment based on real speech.

In addition to this long-term purpose, the current wo
also served two more immediate purposes. One immed
purpose was to test the viability of a data-driven articulato
speech synthesizer. To the extent that the reported forw
models are successful, they will output acoustics that
identical to that of the targets derived from the speak
However, it is important to note that a forward model do
not constitute a speech synthesizer because it does
specify how to control the articulatory dimensions~in the
current work, articulatory states always came from t
speech database!. Nonetheless, a data-driven forward mod
that can output natural-sounding speech may be an impo
step toward building a complete, data-driven, articulato
speech synthesizer.
C. T. Kello and D. C. Plaut: Articulatory-acoustic forward modeling
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The second immediate purpose of the current work w
to generate a lower-bound estimate on the amount of p
netic information that is captured by the articulatory reco
ings in the MOCHA speech database. The task of the
ward models reported herein was to generate the aco
outputs of articulatory inputs as veridically as possible,
fined as the minimization of squared error. If the mod
could perform this task perfectly, it would mean that t
articulatory recordings had captured enough informat
about the vocal tract to generate all of the acoustic deta
the recordings of the speaker’s voice. There was no expe
tion of perfection, but any phonetic information conveyed
the models had to originate in the articulatory recordin
Therefore, the forward models provided a lower bound
the phonetic information available in the articulatory reco
ings. The forward models could not provide an upper bou
because it is possible that the articulatory recordings c
tained more phonetic information than measured in
acoustic outputs; there is no guarantee that all phonetic
formation was extracted by the models, or conveyed by
measures of phonetic information.

II. MODEL

Three forward models were trained on the recordings
one speaker in the MOCHA database. Theall model was
trained on all 460 sentences recorded by the speaker
even model was trained on the even-numbered senten
and theodd model was trained on the odd-numbered s
tences. The odd/even split was arbitrary, and was used to
the generalization of the learned model parameters to in
that were not presented during training. Specifically, the o
numbered sentences were used to test generalization o
even model, and vice versa for the odd model. Tests of g
eralization served to ensure that the model parameters
tured the general relationship of the vocal tract and the
sulting acoustics, rather than individual input/output pairin
or some unknown peculiarities in the speech database.

A. Speech database and pre-processing

Speech tokens were drawn from one female speake
British English~subject ID ‘‘fsew,’’ southern dialect! in the
MOCHA speech database, recorded at the Edinburgh sp
production recording facility. The speech corpus consisted
one token each of 460 phonetically compact sentences
signed to provide a good coverage of pairs of phones, w
extra occurrences of phonetic contexts thought to be ei
difficult or of particular interest. The corpus included all 45
phonetically compact TIMIT~sx! sentences, plus ten add
tional sentences designed to include phonetic pairs and
texts that are particular to British English.

Articulatory recordings in the MOCHA database co
sists of electromagnetic articulograph~EMA!, electropalato-
graph~EPG!, and laryngograph~LYN ! recordings. The EMA
recordings consisted of eight sensors placed in the m
sagittal plane of the vocal tract, attached to the followi
locations: the vermilion border of the upper lip, the verm
ion border of the lower lip, the upper incisor, the lower inc
sor, the tongue tip~5–10 mm from the tip!, the tongue blade
~approximately 2–3 cm posterior to the tongue tip sens!,
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 C. T
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the tongue dorsum~approximately 2–3 cm posterior to th
tongue blade sensor!, and the soft palate~approximately
10–20 mm from the edge of the hard palate!. @X,Y# posi-
tions were recorded from each sensor, sampled at 500 H

The positions of these eight sensors were used to ca
late nine@X,Y# pairs of articulatory dimensions, as follow
One@X,Y# pair coded the position of the lower incisor~i.e.,
jaw movement! relative to the upper incisor. This relativ
coding removed head movement because the position o
upper incisor sensor was fixed relative to the head. T
@X,Y# pairs coded the positions of the upper and lower li
relative to the positions of the upper and lower incisors,
spectively. These pairs coded lip movement independen
head and jaw movement. One@X,Y# pair coded movemen
of the soft palate relative to the upper incisor. Two@X,Y#
pairs coded the overall position of the tongue as the aver
of the three tongue sensors, one pair in absolute coordin
and one pair relative to the upper incisor. Finally, thr
@X,Y# pairs coded each of the three tongue positions, rela
to the absolute average tongue position. These three p
coded local movements of the individual sensors indep
dent of more global movements of the entire tongue.

EPG sensors were placed in 48 normalized positions
the hard palate defined by landmarks on the upper max
Contact between the tongue and each EPG sensor~binary
values! was sampled at 200 Hz. LYN recordings provide
voicing information at the larynx as a wave form sampled
kHz, stored with 16 bit precision, and low-pass filtered
400 Hz. Acoustic recordings were also sampled at 16 k
and stored with 16 bit precision, but they were low-pa
filtered at 8 kHz instead of 400 Hz.

The acoustic and LYN recordings were transform
from the time domain to the frequency domain with the u
of Matlab’s fast Fourier transform~FFT! routine. FFTs were
calculated over hamming windows 64 ms wide, taken at
ms intervals. We explored a range of widths and found 64
to produce the most intelligible reconstructed speech sig
~see Sec. III!. Given the sample rate of 16 kHz, this proc
dure resulted in 511 frequency bins of log magnitude
window after discarding the dc offset. Phase information
the acoustic signal was discarded in the FFT conversion
cause the articulatory recordings were not expected to c
phase information~the loss of phase information was part
responsible for the need for relatively wide processing w
dows!. Only the lower 25 bins were used for the LYN re
cordings because the signal was low-pass filtered at 400
The rear 24 EPG sensors were discarded because they
not activated in the recordings for the chosen speaker.

For each dimension in the acoustic, EMA, and LYN da
streams, the observed values across the entire data set
rank-ordered, and the smallest 100 values were set equ
the 100th smallest value, and the largest 100 values were
equal to the 100th largest value. This procedure normali
very extreme outliers in each dimension of the data strea
thereby restricting their range. The restricted range for e
dimension was then normalized to@0,1#. This normalization
procedure was not necessary for the EPG data because
dimensions were already normalized in the range@0,1#. Fi-
nally, the EMA and EPG data streams were down-sample
2357. Kello and D. C. Plaut: Articulatory-acoustic forward modeling
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31.25 Hz, and aligned with the FFT windows calculated o
the acoustic and LYN data streams.

B. Articulatory and acoustic representations

Outputs of the forward models were vectors of real nu
bers in the range@0,1# that represented the acoustic pow
spectrum at a given 64 ms slice of time. The vectors w
1022 dimensions in size. For each of the 511 FFT bins,
dimension represented the values in the range@0,0.5!, and
another dimension represented values in the range@0.5,1#.
Values outside of a given unit’s range were set to zero on
unit. This output format allowed for better resolution in th
model’s representations, and separate parameters for lea
between the upper and lower ranges~i.e., separate sets o
connection weights fed into the upper-range and lower-ra
output units; see Sec. III C!.

Inputs to the forward model were vectors of real nu
bers in the range@0,1# that represented the previous~32 ms in
the past!, current, and next~32 ms in the future! articulatory
states, relative to the acoustic outputs. The input vec
were 588 dimensions in size, with one third each repres
ing the previous, current, and next articulatory states. E
point in time consisted of 72 dimensions dedicated to EM
positions, 24 dimensions dedicated to EPG contact, and
dimensions dedicated to FFT values from the LYN reco
ings. The EPG dimensions directly coded the aver
amount of tongue contact in a given slice of time for each
the front 24 EPG sensors. Four dimensions were assigne
each of the 18 EMA dimensions~i.e., nine pairs of@X,Y#
positions!, and each of the 25 bins of FFT magnitude~up to
400 Hz in frequency! for the LYN recordings. For each qua
druple assigned to valuex, one dimension codedx directly,
one coded the value 12x, one coded thex values in the
lower range@0,0.5!, and one codedx values in the upper
range@0.5,1#. Analogous to the output format, the split ran
format provided the model with a separate set of parame
for the lower and upper ranges of input values. To comp
ment, thexu12x inverse coding provided two sets of param
eters that spanned the full range of input values. The inve
coding was used to ensure that learning occurred on e
training example, for each dimension, regardless of each
mension’s value. In backpropagation, no learning will occ
on a unit’s sending weights when the activation value of t
unit is zero. Thus, thex and 12x units served to provide
model parameters learned on either side of each dimens

C. Forward model training and results

All three forward models had the neural network arc
tecture depicted in Fig. 1. Each model consisted of 588 in
units, 1022 output units, and 100 hidden units. Acoustic r
resentations corresponded to patterns of activity over the
put units, and articulatory representations corresponde
patterns of activity over the input units. Patterns of activ
over the hidden units corresponded to internal represe
tions that were learned over the course of training~see the
following!. The activation value for each hidden unit an
each output unit was calculated as the sigmoid of the
product of the unit’s incoming weights and the outputs of
2358 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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pre-synaptic units. The activation values of the input un
were set directly equal to the articulatory representation
given point in time in one of the trained sentence tokens~i.e.,
composed of previous, current, and next articulatory state
described earlier!. Every articulatory input unit was con
nected to every acoustic output unit~i.e., full connectivity!.
In addition, articulatory inputs were fully connected to th
hidden units, and the hidden units were fully connected
the output units. Direct connections between inputs and o
puts were included to increase the rate of learning by fac
tating the extraction of any linear relationships between
articulatory and acoustic dimensions. The hidden un
served to capture nonlinear relationships between the in
and output dimensions, although they were free to cap
linear relationships as well. A total of 100 hidden units w
chosen on the basis of trial and error; pilot work indicat
that model performance was worse with fewer hidden un
and no better with more hidden units.

At the start of training, the weights on all connections
the network were drawn randomly with replacement from
rectangular distribution in the range~20.1,0.1!. Weights
were learned via the backpropagation of error signals ge
ated on the outputs units~Rumelhart, Hinton, and Williams
1986!. In particular, time slices from the sentence toke
were presented to the network in batches of 100, sample
random from the training set. For each time slice, the acti
tion values of the input units were set to the correspond
articulatory representation, and those activation values w
propagated forward through the network connections to g
erate a pattern of activation on the output units. For e
output unit, squared error was calculated between the u
activation value, and its target activation, which was det
mined by the acoustic representation for the time slice
question. The error signals were then backpropagated a
the network connections to calculate weight derivativ
Each weight’s derivatives were summed across each batc
100 training examples~i.e., time slices!. After each batch, the
summed derivatives were used to update each weight acc
ing to

Dwi j
@b#5hNh i j

]E

]wi j
1a~Dwi j

@b21#!, ~1!

wherehN was the overall network learning rate~decreased
from 5e24 to 5e25 over the course of training!, h i j was a
weight-specific learning rate,a was a momentum term~fixed
at 0.8!, andb was theNth batch over the course of training
Weight-specific learning rates were adjusted on the basi

FIG. 1. Architecture of the forward models. Arrows indicate full connect
ity between groups of processing units.
C. T. Kello and D. C. Plaut: Articulatory-acoustic forward modeling
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the consistency of weight derivatives across batches~Jacobs,
1988!.

The 460 sentences in the training set for theall model
contained a total of 41 791 slices of time to be trained. T
evenmodel contained 20 794 slices, and theodd model con-
tained 20 997 slices. Each model was trained on 100
batches of training examples, which is about the point
which the reduction in error became miniscule. All thr
models were stopped at exactly 100 000 batches to con
for amount of training. The training sets did not appear to
overfit because, for the odd and even models, error on
untrained sentences decreased throughout training. At
end of training, the average squared error between the ta
and outputs was calculated per frequency per time sl
These averages are shown in Fig. 2 for each of the th
forward models, separated by sentence type~odd- or even-
numbered!. As can be seen, the mean squared error ne
exceeded 0.035 by the end of training. By comparison, m
squared error at the beginning of training was 0.193.

Figure 2 shows that there was a clear rank ordering
the overall amount of model error. The models trained
half of the sentences in the speech database~evenand odd
models! produced the least amount of error on their resp
tive training sets, and the most amount of error on senten
outside their training sets. Theall model produced slightly
more error than theevenandoddmodels for their respective
training sets, but substantially less error than those mo
for sentences outside their training sets. This rank-orde
of error indicates that some learning did not generalize
yond the training sets in theodd andevenmodels, and that
error from these models was reduced somewhat by lear
that was specialized to the training sets.

The pattern of error as a function of frequency w
mostly similar across the different models and training s
There was a sharp dip in error at about 250 Hz, followed
a fairly steady climb in error to a peak at about 4750 H
Error then dropped to a middling baseline level that w
maintained out to 8000 Hz. This pattern was somewhat
ferent for theoddandevenmodels tested outside their train
ing sets in that, for those models, an extra plateau of e
can be seen prior to the peak at about 4750 Hz. The di
250 Hz is due to the fact that the LYN recordings conta
fairly direct information about acoustic energy around t

FIG. 2. Mean squared error per output unit per time slice, as a functio
frequency for theall model, theevenmodel, and theodd model.
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 C. T
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pitch of the speaker’s voice. The peak at about 4750
might have been due to the models’ inability to determine
spectral details of acoustic energy generated by fricative
plosive speech sounds~but this conjecture needs further in
vestigation!. The reasons for the particular characteristics
the rise in error up to its peak, and its drop off after the pe
are currently unknown.

The error scores gave a detailed picture of which f
quency bands were processed more or less accurately b
models, but these scores do not give an interpretable mea
of intelligibility of the target and model tokens. To provide
more standard measure, an energy histogram method~Hir-
sch, 1995! was used to estimate the signal-to-noise ra
~SNR! in the target and model tokens, as well as in the ori
nal, unprocessed tokens. The mean SNR for each catego
tokens was as follows: 28.2 dB for the original tokens, 24
dB for the target tokens, 25.8 dB for theall model tokens,
26.0 for theevenmodel tokens, and 25.7 dB for theodd
model tokens. These means show that, although the orig
tokens were distinguished from the processed ones, the
ergy histogram method did not reflect the overall differenc
in error scores plotted in Fig. 2. A SNR measure that uses
target signal as a baseline would be more appropriate, bu
removal of phase information in the target and model tok
prohibited such a measure. To allow other researchers to
periment with various measures of intelligibility, the wav
forms all of the stimuli in all four conditions can be down
loaded at http://archlab.gmu.edu/;ckello/forward-
models.html.

The error scores and SNRs are quantitative, objec
measures of intelligibility. A more qualitative way to asse
the modeling results is to view spectrograms of the tar
utterances, and compare them against spectrograms o
corresponding model outputs. In Figs. 3 and 4, spectrogr
are shown for one odd-numbered and one even-numb
example sentence, each chosen arbitrarily from the spe
database. At a glance, the model spectrograms are quite
lar to the target spectrograms. Some of the spectral and
poral details in the targets appear to be washed out in
model outputs, particularly above 3000 Hz where the h
monics appear to be completely washed out. These spe
grams are informative visualizations, but ultimately, the fo
ward models must be assessed by measuring the amou
phonetic information contained in their outputs. Such an
sessment is reported in Sec. III.

III. INTELLIGIBILITY TESTS

The error results shown in Fig. 2 provide a quantitati
measure of performance for the forward models, and Fig
and 4 provide a more qualitative measure. However, it
difficult to interpret these measures in terms of the amoun
phonetic information that was captured in the forward ma
ping learned by the models. To better estimate the phon
information captured in the models, the model outputs a
targets were submitted to empirical tests of intelligibilit
Intelligibility of the targets served as a baseline comparis
The percentage of words identified correctly was used a
coarse measure of the overall amount of phonetic inform
tion captured by the models, relative to the phonetic inf

of
2359. Kello and D. C. Plaut: Articulatory-acoustic forward modeling
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FIG. 3. Spectrograms of the target acoustics, and the acoustics output by each of the three model types for an even-numbered sentence token, ‘‘briunshine
shimmers on the ocean.’’ The outlined region shows where the models can be seen to have lost some of the spectral detail in the target utteranc
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mation available in the targets. To provide a rough meas
of the kinds of phonetic information that was lost by t
models, phoneme confusions were identified in the respo
~when possible!, and tabulated.

A. Methods

1. Participants

Eight undergraduates participated as listeners in
speech intelligibility tests for course credit. All participan
reported being native speakers of American English, n
reported a hearing impairment, and none were familiar w
the TIMIT speech database.

2. Stimuli

All 460 sentence tokens were passed through each o
three forward models to generate a series of acoustic out
for each token, and from each model. The Matlab inve
FFT routine was used to convert the acoustic outputs into
acoustic wave form for each sentence token, from e
model. The same procedure was also applied to the tar
resulting in four stimulus tokens for each sentence: one fr
2360 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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each of the three model types, and one from the target
noted earlier, some information in the original acoustic
cordings was lost because it was necessary to discard p
information in the FFT procedure used to generate the ac
tic targets for the models. Phase information was replaced
inserting random phases into the inverse FFT procedure
lot tests indicated that random phases produced more int
gible wave forms compared with phases fixed at values s
as zero. However, loss of the original phase informat
caused some distortion in the generated wave forms.

3. Procedure

Participants were seated in a quiet booth and instruc
that they would be listening to grammatically correct a
semantically plausible English sentences. For each sente
they were instructed to transcribe what they heard to the
of their ability. They were told that some sentences w
garbled and therefore difficult to hear. They were asked
type into the computer as many words as they heard for e
C. T. Kello and D. C. Plaut: Articulatory-acoustic forward modeling



t your r
erance.
FIG. 4. Spectrograms of the target acoustics, and the acoustics output by each of the three model types for an odd-numbered sentence token, ‘‘eaaisins
outdoors on the porch steps.’’ The outlined region shows where the models can be seen to have lost some of the spectral detail in the target utt
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sentence, in the order that they heard them, and they w
encouraged to guess at words whenever necessary and
sible.

Stimulus presentation and data collection was contro
through a graphical user interface, and stimuli were p
sented over Sennheiser MH80 headphones at a comfor
listening level that was held constant across participa
Each trial began with the participant clicking on a button
listen to the current sentence. Participants were forced
click on this button three times in order to listen to ea
sentence three times before responding. Participants ty
each response into a text entry field, and clicked on ano
button to enter the response and begin the next trial. Par
pants were not given feedback at any time.

Participants were given four practice sentences at
beginning of the experiment, followed by one-fourth~115! of
the 460 sentence tokens. Tokens were rotated across sub
to cover all 460 sentences evenly, and each sentence
peared in two of the four token conditions. The token con
tions were rotated across subjects such that each cond
was sampled an equal number of times.

B. Results

All responses were corrected for spelling errors, and
the few cases where the participant responded with a ho
phone of the correct word response~e.g., responding with
TACKS when the correct word is TAX!, the homophone was
replaced with the correct word. The percentage of wo
transcribed correctly for the even-numbered and o
numbered sentences is graphed in Fig. 5 for each of the
token conditions. The graph shows that the target outp
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 C. T
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were transcribed most accurately, with no noticeable diff
ence in accuracies for the even-numbered versus o
numbered sentences. There are at least three possible re
why the intelligibility of the targets was less than perfect:~1!
the tokens were generated by a speaker of British Engl
but the listeners were speakers of American English,~2!
some of the TIMIT sentences contain words likely to
unfamiliar to the participants~e.g., ‘‘neoclassic,’’ ‘‘Nan,’’
‘‘statuesque,’’ etc.!, and~3! phase information in the origina
recordings was lost in the FFT procedure.

The graph also shows that accuracy for the outputs
the all model was 11 percentage points lower on avera
than that for the targets,t(7)57.4, p,0.001. Compared
with theall model, similar levels of accuracy were found fo

FIG. 5. Mean percent words correct in the intelligibility tests, as a funct
of token type~target,all model, evenmodel, orodd model! and sentence
type~even-numbered or odd-numbered sentences!. Error bars show standard
deviations of the subject means.
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a
he
so
2

o

th
a
c

ti
a
R
en
re
fie
as
e
ge
t
te
e

le

fu
d
no
ce

aw
h

t
ea
i

ach
the
te,
urst
be

ed
a-
ibi-
ri-

he
he
ap-
ms
puts

fre-
-
er-
ssing
els.
eral-

one

ed
ula-
. On
n-

ral
ffi-

of
ed
on
uts.
de-

u-
tel-
ly

for-
ed,
ient
.

etic
he
re

he
t the
n-

the
the

nd
e

ac

s

the evenmodel tested on the even-numbered sentences
the odd model tested on the odd-numbered sentences. T
model results are reported primarily as points of compari
for the tests of generalization. In particular, accuracy was
percentage points lower for theevenmodel tested on the
odd-numbered sentences, compared with the same m
tested on the even-numbered sentences,t(6)53.5, p,0.05.
Similarly, accuracy was 18 percentage points lower for
oddmodel tested on the even-numbered sentences, comp
with the same model tested on the odd-numbered senten
t(6)56.1, p,0.001.

To provide a rough measure of the kinds of phone
information that were lost by the models, responses to
model outputs were inspected for phoneme confusions.
sponses were identified in which a target word in the s
tence was clearly replaced with a different word in the
sponse. On this strict criterion, replacements were identi
for only 57% of the responses with errors. The difficulty w
that participants often left target words out of their respons
or occasionally inserted words that were not in the tar
sentences. Deletions and insertions often made it difficul
align a given response with its target. To avoid experimen
bias in alignment decisions, no word replacements w
identified when the alignment was ambiguous.

The counts of phoneme confusions are shown in Tab
These counts are collapsed across confusion order~i.e., pho-
neme A replaced with phoneme B, or B with A!, and only
counts greater than two are shown. In the full set of con
sions, vowels were never confused with consonants, an
the few vowel–vowel confusions that were identified,
particular vowel–vowel confusion occurred more than twi
With respect to consonants, the phoneme pairs /(, [/ and /!,
"/ were confused most often. This was true in terms of r
counts, and counts relative to the number of times these p
nemes appeared in the corpus. Otherwise, features tha
note place of articulation were confused most often, but f
tures denoting voicing and manner were also confused w

TABLE I. Counts of phoneme confusions summed across all model co
tions and all subjects, with the number of times that each confused phon
appeared in the corpus included as a baseline. Counts were collapsed
order of confusion, and counts under three were not included.

Confusion
Articulatory

dimensions confused No. Observed No. in corpu

/(, [/ Place 9 1279
/!, "/ Voicing 6 677
/&, "/ Manner 4 717
/', $/ Manner, nasal 4 1343
/', (/ Nasal, lateral 4 1361
/%, ! Place 4 901
/', &/ Place 4 1301
/-, $/ Place, manner 4 669
/%, */ Place, manner 4 706
/%, )/ Place, manner 4 797
/-, #/ Place, manner, voicing 4 1008
/', ./ Place, nasal 4 1548
/%, "/ Place, voicing 4 846
/%, #/ Place 3 1402
/", )/ Place, manner, voicing 3 573
/h, -/ Voicing 3 253
/$, #/ Voicing 3 1395
2362 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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some regularity. Confused features were often similar to e
on their respective dimension of confusion; for example,
feature plosive was often confused with the feature affrica
and both manners of articulation are characterized by a b
release. Beyond these general statements, it is difficult to
more specific without results from an experiment aim
more directly at phoneme identification. The MOCHA dat
base contained only sentence stimuli, which made it proh
tively difficult to conduct a phoneme identification expe
ment.

IV. DISCUSSION

Three neural network models were trained on t
articulatory-acoustic mapping for one speaker in t
MOCHA speech database. Results indicated that this m
ping was well-approximated in the models. Spectrogra
and analyses of model error showed that the acoustic out
in lower frequency range~below 2000 Hz! closely matched
the target outputs, whereas acoustic outputs in the upper
quency range~above 3000 Hz! were less accurate. Intelligi
bility tests showed that listeners could identify a large p
centage of words in sentences that were generated by pa
the recorded articulatory trajectories through the mod
These tests also showed that the model parameters gen
ized, to some degree, to novel articulatory inputs. On the
hand, intelligibility of the untrained sentences~61% words
correct on average! demonstrated that the model learn
something about the general relationship between artic
tory and acoustic parameters for the speaker’s vocal tract
the other hand, reduced intelligibility of the untrained se
tences compared with the trained sentences~81% words cor-
rect on average! indicated that some aspects of the gene
articulatory-acoustic relationship were not learned su
ciently.

The intelligibility tests provided coarse measures
phonetic information in that phoneme confusions provid
only a rough measure of the kinds of phonetic informati
that were and were not contained in the acoustic outp
Other measures of phonetic information, such as those
rived from tests of phoneme identification~e.g., Bernstein,
Demorest, and Tucker, 2000!, would provide more detail
about phonetic information in the model outputs. Unfort
nately, only the sentence recordings were available for in
ligibility tests, and it would have been difficult to specifical
test phoneme identification with sentence stimuli.

Nonetheless, the results in hand demonstrate that the
ward mapping from articulations to acoustics can be learn
at least to a reasonable extent, via a heuristic of grad
descent~i.e., backpropagation! in an acoustic error space
They also place a lower bound on the amount of phon
information captured by the articulatory recordings in t
MOCHA database. In particular, articulatory recordings we
comprised of 8 mid-sagittal@X,Y# positions at key locations
in the vocal tract, 24 positions of tongue contact with t
hard palate, and FFTs of the acoustic energy generated a
larynx. These articulatory recordings were sufficient to ge
erate much of the spectral and temporal information in
resulting speech acoustics. The phonetic information in
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models’ outputs had to come from the articulatory inp
because the models were data-driven, i.e., they did not
tain anya priori information about speech.

In fact, it is possible that the articulatory recordings a
tually contained more phonetic information than indicated
the reported models. Some information was lost in p
processing the articulatory recordings in order to form
them for the models~e.g., phase information was lost in th
FFT procedure!, and some of this lost information may hav
been phonetic in nature. Even if no information was lost
pre-processing, it is possible that the mapping defined by
model parameters~connection weights! did not capture all of
the phonetic information in the articulatory inputs. Th
shortcoming can occur because of an inadequacy in b
propagation, in the use of sigmoidal processing units, o
the representational scheme used on the inputs or out
Gradient descent learning can settle into a local minimum
error. While any differentiable function can be approximat
using sigmoidal hidden units~Cybenko, 1989!, some func-
tions are better suited than others for this particular ba
function, and the generalization of learning can be influen
by the choice of activation function~Rumelhartet al., 1995!.
Finally, it is well known that the design of input and outp
representations is critical to learning and performance in
neural networks~e.g., Plautet al., 1996!. Thus, it is possible
that an alternate method of modeling would have resulte
a forward mapping that captured more phonetic informat
than the models reported herein.

One reason to improve the fidelity of the current forwa
models is for the purpose of an articulatory speech syn
sizer. Acoustic outputs of the reported models were natu
sounding in that they captured the quality of the speak
voice, although limitations of the models caused their o
puts to sound as if they were masked by noise of some k
Thus, the models might contribute to the development o
natural-sounding articulatory synthesizer if their fidelity w
improved. However, a formidable hurdle in such an eff
would be to manipulate the articulatory dimensions such
any desired utterance could be produced. All sequence
model outputs reported in the current work were genera
from articulatory sequences in the speech database. H
ever, a speech synthesizer must be able to synthesize
given sequence of phones. Modeling articulatory trajecto
is known to be a difficult problem~e.g., Kaburagi and
Honda, 2001!, and the large number of articulatory dime
sions used in the current models are likely to exacerbate
problem. Traditionally, articulatory degrees of freedom a
reduced and made independent by means of theoretical~Mer-
melstein, 1973! or empirical~e.g., Badinet al., 2002; Beau-
temps, Badin, and Bailly, 2001; Blackburn and Youn
2000b! methods. Such methods could be applied to the c
rent forward models, or alternatively, a concatenative met
~see Chappell and Hansen, 2002! could be applied to articu
latory trajectories recorded specifically for phones or
phones. In any case, further work is necessary to determ
whether the forward models reported here could be use
an articulatory speech synthesizer.

Just as a forward model is only one possible compon
of an articulatory speech synthesizer, it is also only one p
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 C. T
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sible component of a full-scale model of speech acquisit
and production. As argued in Sec. I, it would be informati
to test whether models of speech acquisition and produc
can handle the complexities of real speech. The incorpo
tion of a data-driven forward model, similar to the mode
reported here, would be a significant step toward such a
However, some difficult problems would need to be a
dressed before a complete model could be implemented

For instance, the problem of articulatory control th
confronts the development of articulatory speech synthe
ers would also confront the development of models of spe
acquisition and production. Guenther’s DIVA model~Guen-
ther, 1994, 1995; Guentheret al., 1998! has accounted for a
number of phenomena that are relevant to the issue of ar
latory control, but it is currently unknown whether the DIV
model would scale to handle the control of a real hum
vocal tract. The Plaut and Kello~1999! approach is well-
suited to forward models such as the ones reported h
given that both share the same mechanisms of neural
work learning and processing. However, it is currently u
known whether such mechanisms are capable of learn
phonological representations on the basis of real speech
put. Another issue that would have to be confronted is va
ability in the speech signal~e.g., see Perkell and Klatt, 1986
Pisoni, 1981!. For instance, on any given occasion, t
speech signal that corresponds to a given word will
shaped by factors such as the linguistic and nonlingui
context, and the talker’s dialect and voice quality. The res
ant variability poses a significant challenge for any effort
build a computational model of speech acquisition and p
duction. The modeling work reported here is one step tow
meeting these and other challenges inherent to the rese
and engineering of speech.
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