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Abstract:  Von Holst (1939/73) proposed relative coordination as a general characteristic of 
sensorimotor functions like locomotion.  Its functionality derives from striking a balance 
between independence versus interdependence among component activities, e.g., fin or leg 
oscillations in lipfish and centipede models, respectively.  A similar balancing act in the Ising 
(1925) model was found to produce patterns of electron spin alignment, analogous to the soft-
assembly of locomotive patterns.  The Ising model analog to relative coordination is 
metastability, and Kelso (1995) hypothesized that metastability is essential to sensorimotor 
functions across levels and domains of analysis, from individual neurons to neural systems to 
anatomical components of all kinds. In the present survey, relative coordination and 
metastability are hypothesized to underlie the soft-assembly of sensorimotor function, and this 
hypothesis is shown to predict 1/f scaling as a pervasive property of intrinsic fluctuations.  
Evidence is reviewed in support of this prediction from studies of human neural activity, as well 
as response time tasks and speech production tasks.   
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Human activities such as reading, speaking, walking, and especially responding in 
laboratory experiments are typically analyzed in terms of domain-specific mechanisms.  A 
category response “BIRD”, for example, to a laboratory stimulus “sparrow” begins with 
sensation proceeds to perception, then response selection and finally response execution – a 
chain of components aligned to accomplish the specific task of categorization.  The response 
time paradigm is quintessential in this regard, in which a stimulus is presented and subjects 
respond quickly, as soon as the stimulus is perceived and response selected.  The time from 
stimulus presentation to response execution is measured to investigate components of the 
domain-specific causal chain connecting stimulus to response. 

A hierarchy of components is involved in any given sensorimotor function, from individual 
neurons to the largest anatomical components.  Whichever components are investigated, they 
are assumed to play specific roles in any given sensorimotor chain.  For instance, vision 
components may play the role of letter identification in responses to printed words, and speech 
components play the role of response execution if the task is to read words aloud.  Studying 
human behaviors as chains of processing components has long been a productive enterprise in 
terms of describing the demands and constraints imposed by particular tasks.   

However, this focus on domain-specific mechanisms leaves open general questions about 
how sensorimotor components combine and recombine in behavior.  How are components 
coordinated to implement human activities?  In particular, what allows component activities to 
coordinate themselves into a specific function, while at the same time maintaining the 
potential to re-coordinate into other functions as needed?  This deeper question of 
coordination is not usually addressed in domain-specific theories and is the topic of this article.  
Empirical motivation to study coordination of sensorimotor functions is demonstrated by 
laboratory studies of task switching, dual-tasking, and multi-tasking.  In these and related 
paradigms, subjects juggle two or more tasks that may share sensorimotor components.  For 
instance, visual pathways will be shared if the juggled tasks employ visual stimuli, and likewise 
for motor pathways if tasks employ manual responses. 

Our current focus is on how components flexibly reorganize in response to task demands.  
One answer, implicit in some explanations, is that executive control processes or homunculi 
must direct the coordination of components (Monsell, 2003).  Each particular chain may 
correspond to a sensorimotor program, for instance, and control processes select among 
programs and execute them (e.g. Meiran, 2000). The well known problem with this answer is 
that it merely shifts the burden of explanation onto control processes, and begs the question of 
the origins of specialized processes (Hollis, Kloos, & Van Orden, in press; Oyama, 2000; Shaw, 
2001).  

We may also ask about the source of programs to compose the vast range of diverse 
sensorimotor functions needed over time.  The usual answer is that each modular program 
derives from natural selection, or derives from yet smaller component mechanisms that are 
products of natural selection (e.g. Barrett & Kurzban, 2006).  To illustrate, it is uncontroversial 
that neuroanatomical pathways between sensory and motor brain regions have been shaped 
by natural selection, because these pathways are necessary for survival.  For instance 
socializing, foraging, and mating all require both perception and action.  If these three specific 
functions were specific to three separate neuroanatomical pathways, then one could appeal to 
natural selection as their source. 
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But this logic immediately runs into the problem that component functions have many-to-
many relationships with neuroanatomical pathways.  On the one hand, a given function may be 
implemented in a number of different ways, as evidenced by the remarkable plasticity of 
biological organisms to re-implement functions when pathways are damaged or otherwise 
unavailable (Robertson & Murre, 1999; Thulborn, Carpenter, & Just, 1999).  On the other hand, 
any given pathway is involved in many distinct functions if we define function at the organism 
level of human behavior.  Thus the many-to-many relationship makes it difficult to localize 
functions inside fixed components of neural hardware.  It is more intuitive for functions to span 
neural and bodily components, where each component may play different roles to varying 
degrees over time.  The transience of component roles makes functions appear as changing 
patterns of neural and behavioral activity. 

So to reiterate, what enables sensorimotor patterns to flexibly organize and reorganize into 
sensorimotor functions?  We can begin to answer this question by first recasting natural 
selection as a kind of coordination itself, in contrast to the watchmaker that creates and 
assembles component activities (Depew & Weber, 1995; Goodwin, 1994; Kauffman, 1993).  
Coordination is the fundamental process and functional behaviors are its products, or so we 
assume in this article.  The result is soft-assembled functions, i.e., components coordinated and 
configured by virtue of their properties, interactions, and context (Kloos & Van Orden, in press; 
Turvey, 1990).  On this view, natural selection shapes constraints on interactions among 
neuroanatomical components such that their coordinations are flexible and adaptive.  The word 
“soft” in soft-assembly denotes the capacity to form temporary organizations, specific to task 
and context, that may also reorganize to suit changing task demands.  The word also serves to 
contrast with the notion of hard-assembled functions, that is, functions whose particular 
neuroanatomical components are dedicated to play fixed, specific roles.   

In the present article we review and expand upon a theoretical principle that has been 
proposed to enable soft-assembly (Kello, Anderson, Holden, & Van Orden, in press; Kello, Beltz, 
Holden, & Van Orden, 2007).  The principle is metastability and we explain it using formal 
models of criticality (Sornette, 2004).  The Ising (1925) model in particular demonstrates formal 
conditions that give rise to metastable patterns.  Metastable patterns have a potential for 
reorganization that is defining of soft-assembled functions, albeit the Ising model is not a model 
of sensorimotor function per se.  To illustrate the functional potential of metastable patterns, 
we review models that use them to implement perceptual and cognitive-like processes.  

From these models and other related work, we derive a general prediction: If sensorimotor 
functions are soft-assembled as metastable patterns, then 1/f scaling should pervade the 
intrinsic fluctuations of sensorimotor neural and behavioral activity.  We review 
neurophysiological evidence that corroborates this prediction, and also two recent behavioral 
studies wherein otherwise paradoxical data support the prediction.  We conclude by setting a 
course for further investigations into the metastability of sensorimotor functions. 

 
Relative Coordination  

In the early 1900s, Erich von Holst identified two opposing principles in animal models of 
locomotion that together help to explain movement coordination.  In this section we review 
von Holst’s overarching concept of relative coordination which serves to illustrate the 
functionality of metastability.  Also in the early 1900s, Ernst Ising formulated a model of 
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ferromagnetism in which two opposing principles explain spatial patterns of electron spins on a 
grid.  We review the Ising model as well and then draw parallels between von Holst’s relative 
coordination and criticality and metastability, the latter two growing out of Ising’s model.   

Von Holst’s studies of movement coordination focused on bodily components like fins and 
legs, and their dynamics in locomotion.  Coordination of limbs can be described with respect to 
phase relations among component oscillations.  In his studies of limb phase relations in the 
lipfish and the centipede, von Holst discovered the influence of two opposing principles.  On 
the one hand, each lipfish fin or centipede leg was observed to have its own preferred 
frequency of oscillation, which von Holst called its maintenance tendency.  On the other hand, 
pairs of fins in the lipfish, or the many legs of the centipede, were also observed to be drawn 
together to oscillate in synchrony, which von Holst called the magnet effect.  

The most important observation, however, was the joint operation of maintenance 
tendency and magnet effect.  Neither principle by itself accounted for locomotion.  For 
instance, if limb oscillations were driven solely by their maintenance tendency, then phase 
relations among limbs would yield a flat probability distribution of phases, from in-phase to 
anti-phase, because components would oscillate independently of each other.  If driven solely 
by the magnet effect, limbs would stay precisely in-phase, resulting in a spiked probability 
distribution at that phase. 

Thus von Holst’s critical observation was that locomotion over time is driven neither by the 
magnet effect nor the maintenance tendency but by the balanced combination of these two 
principles:  Limb oscillations may fall into regularly patterned phase relations to a degree 
(magnet effect), but limbs also go in and out of phase as each limb is drawn to its preferred 
frequency (maintenance tendency).  Provided that other factors are random and independent, 
the probability distribution of phase relations will tend to have a mean at in-phase with 
normally distributed deviations from the mean (see Figure 1).  

This balance of maintenance tendency against magnet effect defines relative coordination.  
A classic illustration is that of a parent and child walking hand in hand.  There will be a tendency 
for strides to be in-phase, but strides also fall out of phase because the longer legs of the taller 
parent have a lower preferred frequency than the short legs of the child.  The result is strides 
that are in-phase for periods of time, but that also drift into other phase relations depending on 
frequency ratios and extraneous factors. That is, there are intermittent periods of in-phase 
strides (Kelso, 1995).  

Relative coordination is the hypothesized basis for soft-assembly of locomotion in animal 
models like the lipfish and centipede.  The functionality of relative coordination can be further 
illustrated in the centipede (see Van Den Berg, 2000).  Centipedes crawl by oscillating their legs 
in traveling waves that move along their length from anterior to posterior.  By varying phase 
relations among legs over time, a spatiotemporal pattern of leg activity is generated that 
satisfies locomotive needs of the centipede as well as metabolic constraints on energy 
efficiency. 

The centipede crawl does not generalize to other bodily forms, such as four and six-legged 
creatures, because different organisms require different locomotive patterns to satisfy 
particular anatomical, physiological, and environmental constraints.  The constraints inherent 
to four and six-legged organisms, for instance, typically result in movement patterns for which 
adjacent pairs of legs oscillate in an anti-phase relation to each other.  These phase relations 
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are different than the centipede crawl, and such differences across species have sometimes 
been interpreted to imply different genetically determined motor schema to execute different 
locomotive functions (see Katz & Harris-Warrick, 1999) – the antithesis of soft-assembled 
functions.  

Nevertheless, von Holst discovered that the different patterns do not require different 
motor schema; each pattern will emerge in a context of appropriate constraints.  To 
corroborate this idea, Von Holst selectively amputated the legs of centipedes producing four or 
six-legged creatures, and he observed how they coped with their new bodily constraints.  
Remarkably, centipedes recovered locomotive function almost immediately and engaged phase 
relations of leg oscillations appropriate to four or six-legged creatures. They walked in the gaits 
of quadrupeds or insects.   

In the case of the centipede, natural selection has favored a sensorimotor system that 
flexibly and robustly soft-assembles gaits under a wide range of conditions (Kauffman, 1993). 
Particular coordinations are determined by the specific constraints in place, such as the number 
of working legs (for a similar discussion in terms of manual functions, see Schieber & Santello, 
2004).  The genome may contribute constraints that figure in these coordinations, but it does 
not contribute explicit motor schemas. The limb coordination of locomotion is generated by 
intrinsic dynamics and interactions among movement components.  Locomotion is a soft-
assembled function. 

 
Criticality and Metastability 

Von Holst generalized the idea of relative coordination to include neural oscillators (von 
Holst, 1996), and we propose to generalize it further by analogy to principles of criticality and 
metastability developed in statistical physics. This connection is made via the balance between 
independence (maintenance tendency) versus interdependence (magnet effect) among 
component activities.  Von Holst focused on fin and leg oscillations as component activities, 
whereas models of criticality and metastability have been applied more broadly to many 
different kinds of component activities in physical, biological, and social systems (Bak, 1996; 
Sornette, 2004).  The generality of these models stems from the way they are formalized.  Here 
we review two such models and relate them to relative coordination. 

First is the famous Ising model, a pillar of statistical physics.  The model was originally 
formulated with respect to ferromagnetism, and its range of impact grew from a generalizable 
two-dimensional version in which electrons are arranged on a grid (Onsager, 1944).  Each 
electron is represented simply as having either a positive or negative “spin,” and spins are 
determined by two contrasting factors.  Thermal noise, the counterpart to the maintenance 
tendency, creates a tendency towards disorder in which components act independently of each 
other.  Nearest neighbor interactions, the counterpart to the magnet effect, create a tendency 
towards coordination and order.  Nearest neighbor interactions are formalized by a simple rule 
stating that spins tend to align with their four nearest neighbors (external forces can also be 
added to influence spins).   

The relative influence of these counterparts is controlled by a temperature parameter.  
Higher temperatures increase the effects of thermal noise, relative to neighbor interactions.  
Once temperature is sufficiently high, the probability of observing positive versus negative spins 
is equal at 0.5, and each electron’s spin is independent of its neighbors’.  When temperature is 
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sufficiently low, the probability of positive spins goes to 0 or 1 as neighborhood 
interdependence locks in an all-positive or all-negative grid (i.e., a magnet). 

Ising model behavior is less interesting at the previous high and low temperatures because 
the outcomes are so uniformly described:  In both cases, the probability of observing a given 
spin is the same across electrons.  The more interesting situation, what made the Ising model 
famous, is its behavior when temperature nears a critical point of phase transition between 
uniform phases.  Near the critical point, the effect of thermal noise (independent spins) is 
balanced against neighbor interactions (interdependent spins), and this balance allows complex 
transient patterns of aligned spins to emerge on the grid.   

These more complex patterns have a capacity like relative coordination, i.e., the capacity to 
reorganize in response to changing conditions.  In the centipede model, this capacity was 
demonstrated in the reorganization of gait after loss of limbs.  For the Ising model, this capacity 
is seen in the reorganization of spatial patterns in response to external forces applied to spins.  
It derives from a property known as susceptibility and it is universal to entire classes of Ising-like 
models (i.e., universality classes; Sornette, 2004).  Near-critical temperatures create a special 
condition whereby just one flip of a spin can propagate and reorganize an entire grid of spins.  
Susceptibility to perturbation reflects the balance of thermal noise against neighbor 
interactions, which creates long-range dependencies across the entire grid.  Long-range 
dependencies mean that (spin) correlations between pairs of electrons fall off slowly as an 
inverse power of distance between electrons.  This power law fall-off does not have an 
asymptote at zero, which means that each electron has the potential to affect every other 
electron on the grid. 

Long-range dependencies are important because they allow coordinated spatial patterns to 
emerge across all spatial scales. This kind of scale free behavior creates fractal structure (see 
Figure 2):  Smaller clusters of aligned spins are nested within larger clusters, and nest within 
themselves even smaller clusters, out to the size and resolution limits of the model (and out to 
infinity in principle).  The fractal structure of near-critical patterns provides another way to 
understand susceptibility, i.e., single flips may realign the smallest clusters, and realignment at 
the smallest scales percolates up through larger and larger clusters to reorganize the entire 
grid. 

System behavior near critical points is also metastable (Bak, Tang, & Wiesenfeld, 1987; Stoll 
& Schneider, 1972):  Many different patterns of alignment are potential, and the manifestation 
of a given pattern does not extinguish the potential for other patterns to appear.  This is 
strongly reminiscent of relative coordination in which a given pattern of gait does not 
extinguish the potential for other gaits to appear.  Numerous coordinative patterns of leg 
oscillations exist as latent potentials in the centipede, for instance, and manifestations of the 
centipede gait do not extinguish the potentials for quadruped gaits, were only two pairs of 
working legs to be available.  Specifically, metastability balances system flexibility (greater 
entropy over pattern probability distributions) with the capacity to hold patterns as latent 
potentials. 

The simplicity of the Ising model makes it useful for understanding criticality and 
metastability.  However it is too generic to serve as a model of any particular sensorimotor 
behavior.  We do not know of any Ising model of locomotion, for instance.  Nonetheless, Usher 
et al. (1995) described a model with “Ising properties” of neural center-surround receptive 
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fields, and the model exhibits metastability near its critical point.  The model consists of 
neuron-like processing units laid out on a grid.  Each unit is connected to neighboring units as a 
function of distance.  That is, nearby units receive excitatory connections and more distant 
units receive inhibitory connections (hence center-surround).  Units also receive excitatory 
inputs from an externally controlled source, and activation dynamics are based on a simple 
integrate-and-fire equation. 

The balance between independence and interdependence can be parameterized by scaling 
the strength of external inputs with respect to inter-connections among neuronal units.  
Simulations showed that conditions of sufficiently weak external activation mimic high 
temperature thermal noise.  These conditions preclude stable patterns of activity across the 
neuronal grid, and yield a disordered (fluid) state.  Sufficiently strong external activation 
created a tendency towards strictly ordered (crystalline) states, expressed as fixed patterns of 
evenly spaced clusters that reflect the center-surround structure.  Near a critical point, 
however, metastable patterns emerged due to the critical balance between strengths of 
external inputs and internal connection strengths.  Near this critical point, interactions among 
neuronal units were sufficiently strong to organize patterns, and sufficiently weak to allow re-
organization of patterns  with changes in external activity.   

Usher et al. (1995) examined closely the effects of criticality and transient external activity. 
One finding was that critical point dynamics were necessary for the model to “remember” 
previous external inputs, and at the same time respond to new external inputs.  Flexible 
memory seems like an advantageous attribute in all sensorimotor functions, which further 
motivates consideration of metastability as a general principle of soft-assembled function.  This 
generalization motivated the empirical tests described next.  

 
Metastability and 1/f Scaling 

In order to test the generality of metastability, we need an empirical signature of 
metastability that is distinctive and measurable across levels of sensorimotor analysis.  To 
illustrate by contrast, consider that Usher et al. (1995) cited optical imaging data (Van Essen & 
Orbach, 1986) as evidence for fluctuating center-surround patterns consistent with those 
predicted by their model.  Such evidence is useful for testing domain-specific aspects of their 
model, but not the underlying domain-general principles.  We require evidence that is 
potentially observable in every domain and at every level of sensorimotor function.  

Indeed, the fractal structure associated with metastability (e.g. Bell & Southern, 1988; 
Southern & Achiam, 1993) is not only measurable across domains and levels of analysis, but has 
been found throughout nature (Mandelbrot, 1982).  However, fractals at large cover very broad 
classes of phenomena and hence are not particularly distinctive of metastability1.  Fractal 
patterns of spin clusters, for instance, reflect aspects of the model’s grid geometry, and hence 
cannot serve as a general empirical signature of metastability.  Instead we need to examine 
intrinsic fluctuations in spins as the Ising model unfolds in time (for Ising model dynamics, see 
Fisher & Huse, 1986). 

Intrinsic fluctuations are generally observed when any given series of measurements is 
taken repeatedly with minimal perturbation or contingencies from extrinsic sources.  Ising 
model intrinsic fluctuations, for instance, can be observed in the summation of spin values (i.e. 
net magnetization) as a model’s dynamics unfold in time.  In the Ising model and other models 
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of criticality, intrinsic fluctuations exhibit long-range dependencies in time (Fisher & Huse, 
1986), so called fractal time, analogous to fractal spatial patterns.  These temporal long-range 
dependencies more often are called 1/f noise (see http://www.nslij-genetics.org/wli/1fnoise).  
However, to avoid misleading connotations of “noise”, we use an equivalent term, 1/f scaling, 
that highlights scaling properties of fractals. 

The term 1/f scaling denotes a relation between power and frequency when fluctuations in 
data series are analyzed in the frequency domain, as in a spectral plot (see Figure 3).  A time 
series can be transformed into the frequency domain by Fourier analysis which represents the 
series as a set of sine waves, each with an associated frequency and amplitude (and power 
equals amplitude squared).  For 1/f fluctuations, power and frequency are inversely related, 
and the scaling relation is parameterized by an exponent α (1/fα) where α = 1 for ideal 1/f 
scaling.  Fractal structure is seen in an example time series by viewing it at different resolutions 
or scales of time (see Figure 4).  At finer scales, high-frequency, low-amplitude fluctuations are 
seen to be nested within lower-frequency, higher-amplitude fluctuations.  At coarser scales, 
even lower-frequency, higher-amplitude fluctuations become visible, and in the ideal this 
nested structure repeats itself out to the lowest and highest frequencies measurable.   

1/f scaling also reflects a balance that is closely related to the balance of independence 
versus interdependence.  On one side, when α = 0, sampled values in the time series are 
independent of one another (i.e., white noise).  On the other side, when α = 2, each sampled 
value is fully dependent on the previous one, plus a random deviation (i.e., as in Brownian 
motion).  When α = 1 independence is balanced against interdependence. 

The association of 1/f scaling with metastability, that the Ising model dynamics illustrate, 
provides us with a general testable prediction:  If sensorimotor functions are products of a 
metastable system, then intrinsic fluctuations in sensorimotor activity should exhibit pervasive 
1/f scaling.  We derived this prediction using the Ising model, but it stems more generally from 
all models of criticality and metastability.  This includes Usher et al.’s (1995) model of center-
surround neural receptive fields, which exhibited 1/f intrinsic fluctuations in neuronal inter-
event intervals, and other models that simulate critical-point dynamics (Bertschinger & 
Natschlager, 2004; Christensen, Olami, & Bak, 1992; Kwok & Smith, 2005). 

The emphasis in this prediction is that all measurements of intrinsic fluctuations of 
sensorimotor processes should exhibit 1/f scaling, across all levels and domains of analysis—
even multiple simultaneous measurements.  This pervasiveness comes from the assumption 
that metastability is an essential property of sensorimotor functions.  If so, then individual 
neurons and individual limbs, for instance, should all express intrinsic fluctuations as 1/f scaling.  
Measurements of intrinsic fluctuations should exhibit 1/f scaling, regardless of whether 
activities are correlated across components or not.  Pervasive 1/f scaling cannot be isolated in 
any particular component or set of components. 
 
Intrinsic Fluctuations of Sensorimotor Systems 

A sufficient test for pervasive 1/f scaling requires that intrinsic fluctuations be measured 
from multi-level sensorimotor activities – behavioral and neural.  In all cases we require 
measurement series of sufficient length to span three orders of scale magnitude, i.e., at least 
1000 measurements. Three orders of magnitude is a practical threshold for taking seriously that 
one may actually confront 1/f scaling.  Alternatively short-range correlated fluctuations may 
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mimic the long-range correlations of 1/f scaling, but recently developed model testing methods 
favor a 1/f scaling conclusion for behavioral intrinsic fluctuations (Kello et al., in press; Thornton 
& Gilden, 2005). 

Using model dynamics as our guide, we require repeated measurements of activity under 
measurement conditions that are (virtually) identical and that avoid creating contingencies 
from one measurement to the next (Beltz & Kello, 2006; Gilden, 2001; Van Orden, Holden, & 
Turvey, 2003).  For example, intrinsic fluctuations in neural activity are measured by keeping an 
organism inactive and taking repeated measurements of “resting state” neural activity, which is 
ongoing even while organisms are inactive.  Resting state neural activity has been investigated 
in a number of studies, and almost all appropriately conducted studies have observed 1/f 
scaling (Buzsáki, 2006).  The variety of evidence spans cellular to systems levels of analysis; it 
includes current flow through neuronal ion channels (Banerjee, Verma, Manna, & Ghosh, 2006), 
rate of neurotransmitter secretion (Lowen, Cash, Poo, & Teich, 1997), interspike intervals 
between action potentials (Bhattacharya, Edwards, Mamelak, & Schuman, 2005), fluctuations 
in local field potentials (Leopold, Murayama, & Logothetis, 2003), amplitude levels within EEG 
and MEG frequency bands (Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001), 
fluctuations in inter-channel EEG synchronization (Gong, Nikolaev, & van Leeuwen, 2003; Stam 
& de Bruin, 2004), and voxel activations in functional magnetic resonance imaging (fMRI; 
Thurner, Windischberger, Moser, Walla, & Barth, 2003; Zarahn, Aguirre, & Desposito, 1997).   

Resting state behavioral activity most directly translates into tasks for which movement is 
minimized, i.e. homeostatic tasks such as standing still.  Consistent with the extension of 
intrinsic fluctuations from neural to behavioral activity, fluctuations in postural sway have been 
shown to follow a 1/f scaling relation (Duarte & Zatsiorsky, 2001).  More generally, intrinsic 
fluctuations of 1/f scaling are evident generally in repeated measurements of  motor behaviors  
(Riley & Turvey, 2002).  

Locomotor tasks are good examples in this regard because they require repeated 
movements.  In the case of walking, for instance, intrinsic fluctuations will appear in 
measurements of self-paced walking taken at a given point in each stride cycle of leg flex and 
extension.  Hausdorff and his colleagues (Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995; 
Hausdorff et al., 1996) examined inter-stride intervals, and step and swing durations using 
detrended fluctuation analysis (Peng et al., 1994). Intrinsic fluctuations in all measurement 
series exhibited evidence of a 1/f scaling relation.  1/f scaling evidence has also been found in 
multiple, simultaneous, and distinct measures of kinematics in self-paced walking (Jordan, 
Challis, & Newell, 2007; Terrier, Turner, & Schutz, 2005).  The latter results speak to its 
predicted pervasiveness. 

Another prime example of sensorimotor behavior is eye movements and fixations.  Once 
again the elicitation of intrinsic fluctuations requires repeated measurements under relatively 
constant conditions.  For instance, Shelhamer and Joiner (Shelhamer & Joiner, 2003) instructed 
participants to fixate back and forth on a regularly alternating visual cue appearing in two 
constant locations left and right of center.  Fluctuations in inter-fixation intervals were found to 
follow a 1/f scaling relation.  Aks, Zelinsky, and Sprott (2002) also found evidence of 1/f scaling 
in over 10,000 eye movements and fixations in a challenging visual search task (find the upright 
T in a field of rotated Ts).   
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Taken together, the studies reviewed thus far provide evidence for 1/f scaling across 
several levels and domains of sensorimotor function.  In this regard, one can also point to 
cognitive studies that find 1/f scaling across repeated measurements of response time in 
cognitive tasks (Gilden, 1997, 2001; Kelly, Heathcote, Heath, & Longstaff, 2001; Van Orden et 
al., 2003).  Thus the universality of 1/f scaling to sensorimotor and cognitive systems is 
becoming increasingly clear.  Its pervasiveness, however, does not directly follow from 
universality because evidence of pervasiveness requires multiple, simultaneous measurements 
of intrinsic fluctuation.  Such evidence has been found in neural (Bhattacharya et al., 2005; 
Thurner et al., 2003) and locomotor (Jordan et al., 2007; Terrier et al., 2005) activity, but it is 
not commonly found in cognitive behavioral studies because experimental tasks are usually 
simple and tightly constrained to focus on one or a very few measured values, usually averaged 
across trials.  We thus require a task with sufficient behavioral degrees of freedom, to promote 
opportunities to take multiple simultaneous distinct measures. 

Pervasiveness is demonstrated when the intrinsic fluctuations of multiple, simultaneous, 
distinct measures all reveal 1/f scaling.  Otherwise it is too easy to intuit that 1/f fluctuations 
come from one, or a few, domain-specific “hard-assembled” 1/f generators, as has been 
suggested elsewhere (Pressing & Jolley-Rogers, 1997; Wagenmakers, Farrell, & Ratcliff, 2004).  
To our knowledge, the first studies to examine this particular issue in cognitive measures 
looked at two, simultaneous, distinct measures of key press responses – response time itself 
and the duration of key contact before it was released, i.e. key contact duration (Kello et al., 
2007).  Four experiments using four different two-alternative forced choice tasks all yielded 
distinct (uncorrelated) 1/f scaling in the two measures.  Furthermore, manipulations of 
response cue predictability showed that 1/f scaling in response times could be perturbed 
(“whitened”) without affecting 1/f fluctuations in key-contact durations.   

If metastability is the basis for soft-assembling sensorimotor functions, then 1/f scaling 
should further pervade cognitive behavioral kinematics.  It could be argued that two parallel 
and independent 1/f fluctuation series does not go far enough.  A stronger test of pervasiveness 
could examine dozens or even hundreds of parallel measurement series.  Repeated speech 
provides an apt test bed in this regard.  A spoken word requires the coordination of numerous 
muscle groups in the tongue, lips, jaw, velum, larynx, and lungs.  These effectors comprise 
many degrees of freedom and have the potential to generate many simultaneous, distinct 
measurement series, each of which could be examined for 1/f scaling.   

In an actual example, participants were instructed to speak the word “bucket” repeatedly 
at a metronome pace of one repetition every 1200 ms (Kello et al., in press).  Individual 
syllables were extracted from acoustic recordings (bucket was chosen because its acoustic 
properties facilitate automatic extraction), and an acoustic spectrum was computed for each 
syllable.  Each spectrum yielded 45 intensity values across the range of frequencies covering 
audible speech energy (see Figure 5), resulting in a total of 90 measurement series per 
participant. 

Fluctuations in each measurement series were subjected to spectral analysis to test and 
gauge their 1/f scaling relation.  Log power estimates were averaged across all measurement 
series and all ten speakers for each syllable, and graphed as a function of log frequency (Figure 
6).  The graphs showed that syllable averages closely followed the 1/f scaling relation.  An 
exponent was also estimated for each individual measurement series (Thornton & Gilden, 
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2005), and the distribution of exponents was well fit by a normal curve with mean α = 1.08, 
which is near ideal 1/f scaling (α = 1).  The distribution was contained by the lower bound of 
ideal white noise (α = 0) and the upper bound of ideal brown noise (α = 2).   

Clear evidence for pervasive 1/f scaling in the repetition of a spoken word provides strong 
support for metastability as a domain-general explanation.  To further investigate the 
pervasiveness of 1/f scaling, Kello et al. (in press) also examined whether multiple, 
simultaneous, distinct 1/f fluctuation series could be identified in their multivariate data.  They 
conducted a principal components analysis to derive mutually orthogonal sources of variation, 
resulting in 90 mutually orthogonal series per participant, each series aligned with one of the 
principal components and ordered from most to least variance accounted for.   

Analyses showed that the strongest components of variation also exhibited the most ideal 
expression of 1/f scaling (α closest to 1), and that α fell towards zero gradually as components 
decreased in priority.  Also, α was clearly in the range of 1/f scaling (> 0.5) for the top 30 
orthogonal fluctuation series, which on average accounted for 90% of each participant’s data.  
These results agree with pervasive 1/f scaling demonstrated in neurophysiology, and all these 
findings together are naturally accommodated by the hypothesis of metastability.    

 
Conclusions and Future Directions 

In this article, we reasoned that universality and pervasiveness of 1/f scaling in 
sensorimotor functions, across levels and domains of sensorimotor systems, is evidence for a 
general and essential principle of metastability.  Our reasoning was based on arguments 
originally formulated by Turvey (1990) and Kelso (1995) connecting soft-assembly to relative 
coordination, and relative coordination to metastability.  Our contribution was to elaborate and 
extend their arguments by discussing metastability together with criticality, and criticality with 
pervasive 1/f scaling.  Observed pervasiveness is important because it is not explained by 
alternative, domain-specific accounts of 1/f fluctuations, except in an absurd reduction to an 
open-ended, already large collection of separate domain-specific mechanisms, each one 
generating a distinct 1/f signal (for a review of alternatives, see Wagenmakers et al., 2004; see 
Kello et al., 2007, for in-depth explanations of why these alternatives are inadequate for 
pervasive 1/f scaling). 

We are motivated to investigate soft-assembled functions because the alternative—hard-
wired sensorimotor programs—does not appear viable.  A demonstrated model system of soft-
assembly is the slime mold Dictyostelida, which assembles primitive sensorimotor behavior out 
of previously independent single-celled amoeba-like individuals.  In a context of adequate 
resources, the amoebae behave as a dispersed collection of individuals, where each individual 
forages independently of others in its nutrient-rich environment.  But in a context of scarce 
resources, amoebae assemble to form a multi-cellular organism with identifiable body parts for 
sensory (resource detection) and motor (locomotion) functions.  The collective slime mold, thus 
equipped, may then seek greener pastures.   

For decades, biologists searched for a hard-wired program to explain slime mold assembly, 
something like “pacemaker” cells that might centrally control the coordinated behavior, but no 
pacemaker was there to be found.  Then theory and evidence came to light showing the slime 
mold to be a phenomenon of soft-assembly (see Johnson, 2001).  Neither centralized control 
nor a priori structural differences distinguish sensory amoebae from motor amoebae; each 
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single cell can play either role depending on its relation to other cells and its environment at 
the time of assembly.  This now well-understood system illustrates concretely how functional 
roles may be products of soft-assembly.  Soft-assembled functions of locomotion and resource 
detection are intriguing insofar as they resemble perception and action in more intelligent 
creatures. Indeed more cognitive-like functions have been observed in two other slime mold 
models.  

Nakagaki (2000) constructed a slime mold “IQ test” for Physarum polycephalum,  and this 
single cell, multi-nuclei slime mold passed the test.  Nakagaki situated the slime mold in an 
intellectually challenging context.  Resources were hidden in a maze and, remarkably, the slime 
mold found the most efficient (shortest) path to resources. Wayfinding in a maze is not 
plausibly hard-wired in the slime mold genome, and no central executive, no nervous system, 
exists to plan or strategize in finding the shortest path.  Wayfinding exists in this sense as a 
potential for coordinated activity across cells, which seems to have its basis in cytoplasmic 
streaming, but is only revealed under constraints of resources hidden in a maze.   

In a different IQ test, Physarum polycephalum, a large yellow slime mold, served as the 
sensorimotor brain to control a six-legged robot (Tsuda, Zauner, & Gunji, 2006).  The natural 
behavior of the slime mold is to stay away from bright light and seek out dark and moist 
environments.  With the slime mold in control, the robot also avoids light, to stay only in the 
dark.  Light was shined upon a slime mold, grown to fit a six-pointed star, in which each point of 
the slime mold “star” controlled one leg of the robot.  As light caused the slime mold to move, 
this movement was sensed by a supporting circuit to transform the movement of the slime 
mold, to the robot, to escape the light. 

Model systems like the lipfish, centipede, and now the slime mold provide insights into 
principles of soft-assembly.  One salient principle is how constraints (e.g., environmental, 
anatomical, metabolic, and so on) limit function and collapse the potentials of individual 
amoeba to become parts of a way-finding device or the sensorimotor brain of a robot.  
Accepting our argument, 1/f scaling is evidence that human performances are fundamentally 
more like the behavior of slime molds than they are hard-coded computer programs (see also 
Bates & Elman, 2002; Elman, Bates, Johnson, & Karmiloff-Smith, 1996).  

The previous conclusion means that all behaviors are conditioned by embodied and 
situated constraints, and context effects are the norm.  Elaborating this point may eventually 
resolve disputes that arise when context effects complicate or obviate the existence of hard-
wired programs.  We may also move past logics of subtraction and dissociation that have failed, 
so far, to isolate functions of general agreement.  Thus we may de-populate the crowded hotel 
of post hoc resident mental faculties, each one restricted to one kind of behavior.  One may 
replace questions about hard-wired programs with questions about constraints, potentials, and 
coordination of human performance. 

With new questions come new methods for testing new theories.  We can only speculate 
on how progress may unfold, but early on, we see more work being necessary to define the 
conditions under which 1/f scaling is observed, and when and how results deviate from 1/f 
scaling.  Results from initial investigations are consistent thus far with our empirical definition 
of intrinsic fluctuation, but the definition needs further testing, particularly its breadth across 
sensorimotor systems and levels of analysis.  Results thus far also suggest that 1/f fluctuations 
must be defined with reference to their measurement conditions (Van Orden, Kello, & Holden, 
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in press).  The kind of reference frame suggested is analogous to how phenomena came to be 
framed within quantum mechanics, in which probabilistic information about particles is made 
definite only in the context of measurement (Bell, 1987; Herbert, 1987).  This analogy may 
serve to guide further hypotheses and investigations. 

In terms of theory, one important step will be to develop models that use metastability to 
soft-assemble functions in specific sensorimotor domains, and thereby account for empirical 
benchmarks of those functions.  Usher et al.’s (1995) model of center-surround receptive fields 
is potentially one such model, but it did not explicitly make use of the computational 
advantages conferred by metastability.  By contrast, Van Leeuwen, Steyvers, and Nooter (1997) 
used metastability to model perceptual reorganizations that occur when multiple percepts of a 
given stimulus are possible (e.g., the Necker cube and the Schröder stairs). 

Another model that leverages the power of metastability, albeit not in the domain of 
sensorimotor function, was reported by Kwok and Smith (2005).  They built a self-organizing 
neural network to solve combinatorial optimization problems like the famous traveling 
salesman problem.  A parameter governed the order/disorder of component activities, and 
model performance was optimal when this parameter was set at the critical point between 
ordered and disordered phases.  The metastable patterns that then emerged enabled the 
model to more successfully discover globally optimal solutions.  Metastability also produced 
(presumably pervasive) 1/f fluctuations in the model’s component activities.  Search is a 
fundamental sensorimotor function, hence this model may prove useful to inspire new 
simulations of sensorimotor phenomena. 

Another fundamental and essential sensorimotor function is categorization.  Bertschinger 
and Natschläger (2004) reported neural network models that, while not sensorimotor per se, 
demonstrate the power of metastability for purposes of classification (see also Langton, 1990; 
Packard, 1988).  Their networks consisted of randomly connected thresholding neurons (chosen 
for their biological plausibility), and criticality was assessed as a balance of convergence (order) 
and divergence (chaos) in network dynamics.  The metastable regime during training of models 
maximized the number and complexity of learned classes.  As with Kwok and Smith’s (2005) 
study, the work of Bertschinger and Natschläger may inspire additional simulations  using soft-
assembly of sensorimotor functions. 

In closing, one caveat is that human sensorimotor function has a range and depth of 
complexity that will not likely be captured by any computational or biological model, not even 
the slime mold.  Human capabilities are far more complex and differentiated, for instance, 
compared to idealized neurons or single-celled amoebae, or their combinations in models.  
Human behavior entails indefinitely numerous potentials via complex combinations of 
constraints within which sensorimotor functions may be soft-assembled.  Nonetheless, intrinsic 
fluctuations so far reveal the dynamics of metastability.  This evidence supports a reasonable 
working hypothesis and simplifying principle with which to go forward. The kind of scale-free 
dynamics that appear near critical points of complex systems also appear to support the soft-
assembly of sensorimotor functions.   
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Endnotes 
 
                                                 
1
 Researchers debate whether the apparent universality of fractal structure is evidence for 

universal principles of some kind.  We are intrigued by the argument for universality in the 

larger sphere, but this issue is separate from whether particular fractal structures constitute 

evidence for a given general principle, i.e. metastability in our case. 
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Figure 1.  Recordings of limb oscillations taken by von Holst under two different conditions.  The 
top shows dominance of the magnet effect and the bottom shows relative coordination in the 
balance of magnet effect and maintenance tendency.  The waveforms show two limb positions 
along one axis over time, and the histogram shows the distribution of observed phase relations, 
centered at in-phase.  The intermittency of relative coordination results in greater dispersion, 
whereas dominance of the maintenance tendency would show even greater dispersion (i.e. 
nearing a flat distribution across phase relations; not shown). 
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Figure 2.  Example plots of site values (positive or negative spins) for a two-dimensional Ising 
model at low (left), critical (middle), and high (right) temperature values.  Low temperature 
causes spins to align, in the limit becoming all positive or negative, whereas high temperature 
causes spins to randomize.  At the critical temperature, clusters of alignment can be seen at 
multiple scales of analysis (i.e., as if one zoomed in or out on the grid). 
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Figure 3.  An example of 1/f fluctuations in one participant’s series of reaction times (Kello et 
al., 2007), shown as a time series on the left, and its corresponding spectrum on the right.  The 
spectrum is plotted in log-log coordinates to express the 1/f relation as linear with a slope near  
–1. 
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Figure 4.  An example series of 1/f fluctuations, plotted at three different time scales to show its 
self-similar structure (taken from Holden, 2005). 
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Figure 5.  Sample series of intensity measurements for one participant taken from Kello et al. (in 
press).  At the top are plotted three example fluctuation series of intensity estimates at three 
different frequencies for each syllable “buck” and “ket”.  To visualize this participant’s full 
pattern of fluctuations, all 45 intensity series for each syllable are plotted as two spectrograms.  
Intensity is coded using a magenta-black-cyan color scale, and the trial series is on the x-axis.  
The spectrograms show that intensity fluctuations were temporally non-random and yet non-
identical across frequencies.   
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Figure 6.  Average composite spectra are plotted for each syllable and each of the ten 
participants reported by Kello et al. (in press).  The 45 composite spectra for each syllable and 
each participant were averaged together, and each composite per syllable (“buck” left and 
“ket” right) and per participant (10 participants, top to bottom) is plotted in log-log coordinates 
(open diamonds).  Participants’ composite spectra are separated in each graph by log units for 
the sake of visibility.  Thorton and Gilden’s (2005) “fractional Brownian motion plus white 
noise” model was fit to each plotted composite, and the resulting model spectra are shown by 
the solid lines. 
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