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Abstract 
Foraging is a search process common to mobile organisms, 
and foraging paths commonly exhibit statistical patterns akin 
to Lévy walks. There may be common factors and benefits 
underlying these patterns, but investigations are hindered by 
difficulty in assessing and manipulating search environments 
and task conditions. In the present study, a simple foraging 
game was developed to isolate and manipulate two factors 
hypothesized to make Levy walks adaptive search strategies, 
sparsity and spatial clustering of targets in the search 
environment. The game entailed navigating a fuel-limited 
ship over a 2D grid to find as many targets as possible, 
rendered as asteroids in outer space. Over 1800 participants 
were recruited to play using Amazon’s Mechanical Turk, in 
order to widely sample the parameter space defined by 
degrees of target sparsity and clustering. Observed search 
paths resembled Lévy walks with memory, and those of high 
performers were found to vary adaptively with clustering, but 
not sparsity.  Results indicate that Lévy-like walks can 
emerge from search strategies and algorithms adapted to 
environments with clustered resources. 

Keywords: Foraging; Lévy walks; crowdsourcing; adaptive 
search. 

Introduction 
Perhaps the most ancient kind of search function in 
biological organisms, in terms of evolutionary history, is 
foraging—moving about one’s environment in search of 
resources like food, locales like shelter, or other organisms 
like mates. Studies of animal foraging have found a 
common statistical pattern in foraging paths known as a 
Lévy walk (Viswanathan et al., 1996).  Paths are clustered 
such that most path segments are relatively short, but 
interspersed with longer segments, occasionally much 
longer. Intriguingly, the distribution of path lengths 
consistently follows an inverse power law, P(l) ~ 1/lα, where 
α ~ 2. Lévy -like path lengths are observed for foragers from 
bacteria (Berg, 1993) to humans (Rhee, Shin, Hong, Lee, & 
Kim, 2011). 

Lévy foraging paths can be modeled simply as random 
walks with path lengths sampled from a power law, 
although path directions may be correlated over time 

(Viswanathan et al., 2001), and mechanisms of navigation 
are left unspecified. Despite their simplicity, Lévy walks 
have proven influential because they suggest that search 
benefits are conferred by power law path lengths, at least 
under certain foraging conditions (Viswanathan & 
Buldyrev, 1999). In particular, when α ~ 2 and targets are 
sparsely and randomly distributed, Lévy walks are able to 
search spaces more completely compared with Gaussian-
distributed random walks, and find targets at a maximal rate.  

The potential benefits of Lévy walks recently have led 
cognitive scientists to investigate whether they occur in 
perceptual, memory, and decision-making search tasks. First 
were Rhodes and Turvey (2007), who investigated Lévy 
walks in a classic category recall paradigm (Bousfield & 
Sedgewick, 1944). Participants recalled as many animals as 
they could from long-term memory, for twenty minutes. 
Inter-response intervals were used as indirect measures of 
memory “path lengths”, and they were found to be best fit 
by inverse power law functions with exponents near two. 
Then, Rhodes, Kello, and Kerster (2011) found that saccade 
lengths in visual foraging tasks also followed a heavy-tailed 
distribution resembling the optimal Lévy walk, although the 
lognormal function provided the best fit to data. A 
lognormal can be viewed as a constrained power law 
(Stephen & Mirman, 2010), which should be expected when 
search is constrained to a relatively small space (a computer 
monitor). Most recently, Radicchi and Baronchelli (2012) 
found search intervals to be Lévy-like when buyers searched 
the bid space in online auctions, and observed exponents 
were shown to maximize economic gains. 

These and other similar studies raise the question of what 
mechanisms and factors give rise to Lévy-like search paths 
across so many different species and foraging conditions. 
Theoretical analyses suggest that sparsity of targets is a 
factor, but it is prohibitively difficult to test this hypothesis 
in natural foraging conditions, including visual and memory 
foraging of natural scenes and categories. Also, most 
theoretical analyses have assumed randomly distributed 
targets (Viswanathan & Buldyrev, 1999), but food and other 
resources may instead tend to be clustered in nature, as is 
the case with plankton distributions, for instance (Mackas & 



Boyd, 1979). In terms of mechanism, Lévy-like foraging 
may be intrinsic to both biological and cognitive search 
functions, in which case Lévy walks would occur regardless 
of search conditions. Alternatively, Lévy walks instead may 
emerge as a result of interactions between search processes 
and their environments. These interactions may unfold over 
the course of minutes and even faster timescales.  

In the present experiment, we examined the roles of 
sparsity and clustering in a web-based video game designed 
to mimic canonical foraging. We used a video game because 
it allowed us to know and manipulate search conditions. We 
made the game web-based so that we could collect data 
from very large numbers of participants on Amazon’s 
Mechanical Turk. Recent studies have shown that Turk 
yields data comparable to university participant pools 
(Germine et al., 2012; Snow, O’Connor, Jurafsky, & Ng, 
2008), and we confirmed this in a pilot study of our video 
game run through the UC Merced participant pool (not 
reported). Turk allowed us to robustly sample the parameter 
space created by factorial manipulation of sparsity and 
clustering. Turk also allowed us to collect enough data to 
compare players who find greater versus fewer numbers of 
targets, i.e. high versus low performers.  

Comparisons of high versus low scorers are critical 
because they test whether adaptive search is associated with 
closer-to-optimal (i.e. higher scoring) performance. That is, 
do high performers adapt their search strategies, as 
measured by path length distributions, to changes in sparsity 
and clustering? Do high scoring foraging paths more closely 
resemble Lévy flights with the theoretically optimal 
exponent of two? Addressing these questions will provide 
evidence on 1) whether Lévy-like foraging paths can 
emerge from searcher-environment interactions on 
timescales no longer than minutes, and 2) whether adapting 
paths to sparsity or clustering is associated with better 
performance. 

Methods 
The foraging game was framed as a task of exploring 

outer space to find resources on asteroids (see Figure 1, and 
http://cogmech.ucmerced.edu/downloads.html to play). 
Participants used a mouse (or functionally equivalent 
device) to move a spaceship over a 1280x1024 grid of 
space. Movement was controlled at two scales, zoomed in 
and zoomed out. When zoomed out, the entire space was 
visible at once, and participants clicked on a location to 
“fly” the ship to that spot (shown by animation). 
Participants pressed the space bar to zoom in 15X at a given 
location, at which point they again could navigate the ship 
via point-and-click. Hubble images were used as 
background to help engage players by giving the sense of 
outer space, and to provide environmental cues that are, in 
general, ubiquitous to natural search conditions. These cues 
may encourage use of memory in navigation (e.g. Vinson, 
1999), which shall be discussed later. 

Asteroids were visible only when zoomed in, and 
resources were harvested by moving to them such that 

collision occurred between the asteroid and ship graphics. A 
set amount of fuel was provided for each play of the game, 
and fuel usage (shown by a fuel bar) was a linear function of 
distance traveled, plus a small constant for each zoom 
in/out. The amount of fuel provided was determined based 
on pilot work to allow for about 5 minutes per play, and to 
enable players to find some but not all asteroids. Each 
successful harvest was indicated by sight and sound, and 
asteroids could only be harvested once (the un/harvested 
status of asteroids was not displayed). Each harvest added 
one point to the score (no fuel was added), and play 
continued until all fuel was expended. 
 

 

 
 

Figure 1: Example game space shown zoomed out (above), 
along with the corresponding zoomed in view (below). 

Current score is shown in upper left corner, and fuel bar 
with remaining fuel in red is shown in upper right corner. 

 
The game was designed to mimic foraging as exemplified 

by aquatic birds hunting for fish, or the eyes scanning a 
scene to gather visual information. Relatively short 
movements are made during resource acquisition (while in 
the water and close to the surface, or during fixations), 
interspersed with longer-scale movements when no 
resources are acquired (while flying high above the water, 
or during saccades when visual information uptake is 
attenuated; Ross, Morrone, Goldberg, & Burr, 2001). 
Foraging costs in natural searches (e.g. risk and energy 
expenditure) were lumped into the fuel cost of travel, 
although time costs were also a factor, given the natural 
tendency to minimize time spent. 

http://cogmech.ucmerced.edu/downloads.html


   The game was coded in Flash so it could be distributed via 
the web, with game data collected on a local server. We 
used Amazon’s Mechanical Turk to find people willing to 
play the game twice (plus a 1 minute practice session to 
learn) for 75 cents in compensation. Pilot work indicated 
that the availability and quality of Turk workers fell off 
precipitously for tasks lasting more than 10-15 minutes. A 
step-by-step demo, along with instructions in English, was 
presented at the beginning of play, and each play was set to 
last about 5 minutes (assuming no breaks). Two plays were 
required for each paid work session.  
 

 
 

Figure 2: Example of 150 asteroids clustered at 0.05, 0.15, 
0.25, and 0.5, left to right, top to bottom. 

 
The number of asteroids per play was set at four different 

levels: 25, 50, 100, and 150. Pilot work indicated that 25 
asteroids meant that players occasionally found only a few 
of them (or even none), and 150 meant that players found 
asteroids nearly every time the zoomed in. Clustering of 
asteroids was manipulated at four different levels of a 
probabilistic parameter: 0.05, 0.15, 0.25, and 0.5. This 
parameter controlled the probability of dividing asteroids 
evenly (0.5) or entirely to one side (0.0) in an algorithm that 
divided a given set of asteroids recursively into alternating 
horizontal and vertical splits of a given 2D space. Asteroids 
were placed when only one remained in a given recursively 
split section of the space (placed at random in the section), 
and/or when the space could be split no further (see Figure 2 
for example asteroid distributions, and Figure 3 for 
pseudocode). This algorithm created clusters whose sizes 
followed a nested scaling relation to varying degrees, 
consistent with findings of scaling law clustering of natural 
resources (Humphries et al., 2010; Mackas & Boyd, 1979). 
The algorithm also created asteroid distributions that were 
independent of Hubble image backgrounds, and participants 
were informed of this independence during the demo/ 
instruction period. 

The full 4x4 factorial of sparsity and clustering levels was 
tested. Each participant played twice in only one of the 16 

possible conditions, chosen at random at the start of each 
Turk session. The demo and instructions included an 
example asteroid distribution for the condition the 
participant was in, to help them formulate an informed 
foraging strategy. Players were also encouraged to achieve 
the best score possible by maintaining a high score board, 
and allowing high scorers to enter their initials for display to 
other players. 
 

function distributeResources(rectangle, prob_split) 
{ 
  if (rectangle.stars_remaining < 1) return  
  else if (rectangle.size < 1 pixel) { 
    place remaining stars at pixel 
    return 
  } 
  else if (rectangle.stars_remaining == 1) { 
    place star randomly in rectangle 
    return 
  } 
 
  // alternate between vertical and horizontal splitting 
  (rectangle1,rectangle2) = splitRectangle(rectangle,alternate) 
 
  for each star { 
    if (random_prob() < prob_split) star in rectangle1 
    else star in rectangle2 
  } 
 
  // bias direction is randomized each split  
  if (random_prob() < 0.5) prob_split = 1 – prob_split 
 
  distributeResources(rectangle1, prob_split) 
  distributeResources(rectangle2, prob_split) 
} 

 
Figure 3: Pseudocode for asteroid distribution algorithm 

Results 
A total of 1,825 play sessions were administered on 

Turk. Participants who did not produce more than 80 zoom 
in actions per play were excluded from analysis (603 
participants). Pilot work indicated that participants who 
simply expended fuel to complete the task, rather than 
endeavored to find asteroids, were usually revealed as 
making mostly large zoom out movements to expend fuel 
quickly. Of the remaining 1,222 participants, it was 
determined that 393 of them were participants who played 
in two or more Turk sessions. Analyses with and without 
these repeats indicated no qualitative change in results, so 
all plays were included in the reported results. Analyses 
combine zoomed in and zoomed out path lengths. 

Visual inspection of zoomed out flight paths revealed 
directional movements that ranged in their temporal 
correlations, which are a basic expression of memory in 
search paths. Two example paths at the two ends of this 
range are shown in Figure 4. Paths that consisted of highly 
regular directional movements were seen as “sweep” 
strategies designed to systematically cover the space in left-
right, top-down, spiral, and other search patterns. Paths at 
the other end of the range consisted of seemingly haphazard 
directional movements, akin to random walks. In the middle 
were mixtures of the two, plus directional movements that 
followed irregular contours of Hubble images (despite 
instructions that distributions were independent of images). 

To minimize effects of practice and learning, only the 
second of two plays per Turk session was analyzed (unless 
specified otherwise). Performance was measured as the 



proportion of available targets harvested, and plays were 
divided into three categories of performance, for each of the 
16 game conditions: Top 20, middle 20, and bottom 20 
scores. More than 60 Turk sessions were randomly assigned 
to each game condition, so any additional plays were 
excluded from reported analyses. The constant of 20 plays 
per cell simplified statistical analyses, and excluding plays 
in between performance categories helped to make those 
categories distinct. 

 

 

 
 

Figure 4: Two example flight paths of more versus less 
directionally correlated movements (top versus bottom). 
Red and green lines indicate zoomed out and zoomed in 

movements, respectively. Blue dots indicate clicked 
locations, and yellow dots indicate points of harvest. 

White boxes indicate areas of zoom in. 
 
All results are graphed and analyzed as a function of 

sparsity, clustering, and performance category. A three-way 
analysis of variance was conducted for each dependent 
measure, and only main effects and two-way interactions are 
reported because these are the statistical tests relevant to our 
research questions and hypotheses. First, we examine score 
as function of these three factors, shown in Figure 5. The 
main effect of performance category is itself based on score, 
and is so large throughout our analyses that reporting its 
reliability was unnecessary.  

As for the other two main effects, sparsity was not 
reliable, F(3,18) = 2.1, p > 0.1, but clustering was, F(3,18) = 
38.42, p < .05. The interaction of performance category with 

sparsity was also not reliable, F(6,18) = 0.84, p > 0.5, but it 
did interact with clustering, F(6,18) = 55.41, p < .05. Visual 
inspection shows that scores improved with clustering for 
high performers, but the opposite effect occurred for low 
performers. These results show that foragers adapted to 
clustering but not sparsity, and low performers appeared to 
adapt counterproductive strategies in terms of score. Thus 
we have initial evidence that high performers took 
advantage of the spatial correlations in clustering, 
suggesting that foraging paths emerged from interactions 
between search processes and game conditions.  

 

 
 

Figure 5: Proportional score as a function of quantity (i.e. 
sparsity), clustering, and performance category. 

 
However, one might argue that each forager has an 

intrinsic strategy, or a strategy chosen without regard to 
conditions. Effects of clustering merely may show that the 
consequences of good versus bad strategies increase with 
clustering. We tested this possibility by examining the 
change in score from first to second play. We found that 
score increased over time for high performers (+19%), but 
decreased for low performers (-14%), t(638) = 17.7, p < .01. 
This difference suggests that strategies changed over the 
course of play, for better or worse, indicative of interactions 
between search processes and game conditions. 

Next we examine mean path length, shown in Figure 6. 
High performers had shorter path lengths overall, which 
indicates that shorter path lengths allowed for greater 
coverage of the space (confirmed by coverage analyses not 
reported). This main effect would be expected to diminish, 
and possibly even reverse, if fuel cost more per zoom. 

There were no main effects of sparsity on mean path 
length,  F(3,18) = 2.19, p > .1,  and neither of clustering, 
F(3,18) = 1.7, p > .2. The interaction of performance 
category with sparsity again was not reliable, F(6,18) = 
1.66, p > .15, but it interacted reliably with clustering once 
again, F(6,18) = 4.61, p > .05. Visual inspection shows that 
path lengths for high performers increased with clustering, 
whereas they decreased for low performers. The increase for 
high performers presumably reflects the increased need for 
larger jumps as clusters became more tight and scattered. 
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Again, low performers appeared to adjust strategies as well, 
but in counterproductive ways. 

 

 
Figure 6: Proportional score as a function of quantity (i.e. 

sparsity), clustering, and performance category. 
 

Next we examine whether foraging paths resembled Lévy 
walks, in the sense that path length distributions were power 
law distributed with estimated exponents near two. We used 
multi-model inference (Symonds & Moussalli, 2010) to test 
which of four different functions provided the best fit to the 
distribution of path lengths for each participant (mean of 
217 path segments per participant): Normal, exponential, 
lognormal, and Pareto. Only the latter two are heavy-tailed 
and Lévy-like, and the method uses Akaike’s information 
criterion (AIC) to find the function with the shortest 
information-theoretic distance to the data. 

The lognormal function provided the best fit for 68% of 
the participants, with the remaining trials roughly evenly 
split between normal and exponential fits (Pareto never 
provided the best fit). As mentioned earlier, the lognormal is 
akin to a constrained power law, and the foraging game 
constrained movements in terms of a limited amount of 
space. An example distribution from one participant is 
plotted in Figure 7 in logarithmic coordinates, which is 
representative of the majority of participants. The 
constrained, normal-like portion of the distribution is seen 
as a slight hump on the left side, and the power law-like tail 
is seen as a negatively sloped line on the right.  

 
Figure 7: An representative path length distribution for one 

participant, plotted in logarithmic coordinates 

We further examined the tails of path length distributions 
in two ways. First, the fitted lognormal functions have μ and 
σ parameters, where the latter roughly corresponds with the 
heaviness of the tail. Heavier tails indicate more Lévy-like 
distributions. Best-fitting σ’s are shown in Figure 8 for all 
participants, including those whose data were better fit by 
normal or exponential distributions.   

The overall pattern of results was similar to previous 
ones. There was no main effect of sparsity, F(3,18) = 1.17, p 
> .35, but clustering was again reliable, F(3,18) = 10.52, p < 
.05. Visual inspection reveals the possibility of an effect in 
the high/mid performers which was supported by a reliable 
interaction of performance category with clustering, F(6,18) 
= 12.29, p < .05. Once again, there was no reliable 
interaction with sparsity, F(6,18) = 1.77, p > .15. Visual 
inspection shows that the tails of path length distributions 
were heavier overall for low performers, but they became 
heavier with greater clustering only for high performers. 

To gauge whether distributions were becoming more 
similar to the theoretical power law exponent of two, we fit 
regression lines (see Figure 7) to the right half of 
distributions in logarithmic coordinates, and results are 
shown in Figure 9. None of the main effects (excluding 
performance category) or interactions were reliable, but 
slopes were generally in the neighborhood of the theoretical 
optimum of -2 (negative of the optimal exponent). 
Moreover, slopes for high performers were closest in their 
approach towards -2 with greater clustering. 

 

 
Figure 8: Lognormal σ as a function of quantity (i.e. 

sparsity), clustering, and performance category. 
 

To summarize, search paths generally resembled the 
optimal Lévy walks predicted to occur, to some degree. The 
majority of path length distributions were heavy-tailed, and 
tails resembled power laws with exponents near two, to 
some degree. Distributions most closely resembled Lévy 
walks for high performers in the most clustered resource 
conditions. Foraging paths also departed from Lévy walks, 
in that directions were never drawn purely at random. 
Example paths (Figure 4) showed that directions tended to 
be correlated in time. This tendency can be quantified 
simply by computing the proportion of times that next steps 
went in the same direction, within some threshold. Angular 
changes were between 0 and 180 degrees (collapsing left 
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versus right turns) and divided evenly into 45 bins. The 
proportion of movements falling into the smallest angular 
bin was 25%, about 10X greater than chance. Thus foraging 
paths had memory in terms of directional correlations. 

 

 
Figure 9: Regression slopes as a function of quantity (i.e. 

sparsity), clustering, and performance category. 

Discussion 
In the present study, analyses of data from a web-based 

foraging game showed that Lévy-like search paths emerge 
from search processes that change depending on the 
clustering of resources. This was true for both high and low 
performers, although only high performers changed their 
search processes adaptively. The lack of a sparsity effect 
was conspicuous because prior theoretical analyses suggest 
that the benefits of Lévy-like search paths are most 
prevalent when items are rare to be found. However, prior 
analyses focused on random Lévy walks, whereas observed 
foraging paths clearly had memory. Memory sometimes 
manifested as “sweep” searches, but more generally, 
directions of next steps depended on previous steps.  

Our results suggest that the prevalence of Lévy-like walks 
in both animal and cognitive searches can be better modeled 
by processes with memory that attend to target and task 
conditions, as opposed to random walk processes. The 
observed effects of clustering indicate that search processes 
take advantage of spatial correlations in resource 
distributions when they exist and are known or learned. A 
simple approach to modeling an effect of spatial correlations 
is for search processes to follow a gradient of resource 
density. These and related modeling ideas (e.g. Ferreira, 
Raposo, Viswanathan, & da Luz, 2012) will be pursued in 
future research. 

Acknowledgments 
This work was supported by a grant from the National 
Science Foundation, BCS 1031903 (PI Kello). 

References 
Berg, H. C. (1993). Random walks in biology. Princeton 

University Press. 
Bousfield, W. A., & Sedgewick, C. H. W. (1944). An 

analysis of sequences of restricted associative responses. 
Journal of General Psychology. 

Ferreira, A. S., Raposo, E. P., Viswanathan, G. M., & da 
Luz, M. G. E. (2012). The influence of the environment 
on Lévy random search efficiency: Fractality and memory 
effects. Physica A: Statistical Mechanics and its 
Applications, 391(11), 3234-3246.  

Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. 
F., Chatterjee, G., & Wilmer, J. B. (2012). Is the Web as 
good as the lab? Comparable performance from Web and 
lab in cognitive/perceptual experiments. Psychonomic 
bulletin & review. 

Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., 
Musyl, M. K., Schaefer, K. M., … Sims, D. W. (2010). 
Environmental context explains Lévy and Brownian 
movement patterns of marine predators. Nature, 
465(7301), 1066–9. 

Mackas, D. L., & Boyd, C. M. (1979). Spectral analysis of 
zooplankton spatial heterogeneity. Science, 204(4388), 
62. 

Radicchi, F., & Baronchelli, A. (2012). Evolution of optimal 
Lévy-flight strategies in human mental searches. Physical 
Review E, 85(6), 1–8. 

Rhee, I., Shin, M., Hong, S., Lee, K., & Kim, S. (2011). On 
the levy-walk nature of human mobility. /ACM 
Transactions on, 19(3), 630–643. 

Rhodes, T., & Turvey, M. (2007). Human memory retrieval 
as Lévy foraging. Physica A: Statistical Mechanics and 
its Applications, 385(1), 255–260. 

Ross, J., Morrone, M., Goldberg, M., & Burr, D. (2001). 
Changes in visual perception at the time of saccades. Rev. 
Neurosci, 24(2), 113–21. 

Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. (2008). 
Cheap and fast---but is it good?: evaluating non-expert 
annotations for natural language tasks. … Methods in 
Natural Language …, (October), 254–263. 

Stephen, D. G., & Mirman, D. (2010). Interactions dominate 
the dynamics of visual cognition. Cognition, 115(1), 154–
165. 

Symonds, M. R. E., & Moussalli, A. (2010). A brief guide 
to model selection, multimodel inference and model 
averaging in behavioural ecology using Akaike’s 
information criterion. Behavioral Ecology and 
Sociobiology, 65(1), 13–21. 

Vinson, N. (1999). Design guidelines for landmarks to 
support navigation in virtual environments. Proceedings 
of the SIGCHI conference on Human …. 

Viswanathan, G., Afanasyev, V., Buldyrev, S., Murphy, E., 
Prince, P., & Stanley, H. E. (1996). Lévy flight search 
patterns of wandering albatrosses. Nature, 381(6581), 
413–415. 

Viswanathan, G., Afanasyev, V., Buldyrev, S. V., Havlin, 
S., Luz, M. G. E. da, Raposo, E. P., & Stanley, H. E. 
(2001). Lévy flights search patterns of biological 
organisms. Physica A: Statistical Mechanics and its 
Applications, 295, 85–88. 

Viswanathan, G., & Buldyrev, S. V. (1999). Optimizing the 
success of random searches. Nature, 401(6756), 911. 

.05 .15 .25 .50

-2.2

-2.1

-2

-1.9

-1.8

-1.7
   

Resource Clustering

Sl
op

e

 

 

Top 20 Scores
Middle 20 Scores
Bottom 20 Scores

25 50 100 150

-2.2

-2.1

-2

-1.9

-1.8

-1.7
   

Resource Quantity

 

 

Top 20 Scores
Middle 20 Scores
Bottom 20 Scores


	Adaptive Foraging: Effects of Resource Conditions on Search Paths  in a Web-Based Foraging Game
	Bryan Elvis Kerster (bkerster@ucmerced.edu)
	Christopher T. Kello (ckello@ucmerced.edu)
	Cognitive and Information Science, 5200 N. Lake Road
	Merced, CA 95343 USA
	Theo Rhodes (theorhodes@gmail.edu)
	Cognitive Science and Psychology, 7060 Route 104
	Oswego, NY 13126 USA
	Ralph Jerry Bien-Aime  (rbien-aime@ucmerced.edu)
	Cognitive and Information Science, 5200 N. Lake Road
	Merced, CA 95343 USA
	Abstract
	Introduction
	Methods
	Asteroids were visible only when zoomed in, and resources were harvested by moving to them such that collision occurred between the asteroid and ship graphics. A set amount of fuel was provided for each play of the game, and fuel usage (shown by a fue...
	Figure 1: Example game space shown zoomed out (above), along with the corresponding zoomed in view (below). Current score is shown in upper left corner, and fuel bar with remaining fuel in red is shown in upper right corner.
	The game was designed to mimic foraging as exemplified by aquatic birds hunting for fish, or the eyes scanning a scene to gather visual information. Relatively short movements are made during resource acquisition (while in the water and close to the s...
	The full 4x4 factorial of sparsity and clustering levels was tested. Each participant played twice in only one of the 16 possible conditions, chosen at random at the start of each Turk session. The demo and instructions included an example asteroid di...
	Visual inspection of zoomed out flight paths revealed directional movements that ranged in their temporal correlations, which are a basic expression of memory in search paths. Two example paths at the two ends of this range are shown in Figure 4. Path...

	Discussion
	Acknowledgments

