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Abstract

Recent studies of semantic memory have investigated two theories of optimal search adopted

from the animal foraging literature: L�evy flights and marginal value theorem. Each theory makes

different simplifying assumptions and addresses different findings in search behaviors. In this

study, an experiment is conducted to test whether clustering in semantic memory may play a role

in evidence for both theories. Labeled magnets and a whiteboard were used to elicit spatial repre-

sentations of semantic knowledge about animals. Category recall sequences from a separate exper-

iment were used to trace search paths over the spatial representations of animal knowledge.

Results showed that spatial distances between animal names arranged on the whiteboard were cor-

related with inter-response intervals (IRIs) during category recall, and distributions of both depen-

dent measures approximated inverse power laws associated with L�evy flights. In addition, IRIs

were relatively shorter when paths first entered animal clusters, and longer when they exited clus-

ters, which is consistent with marginal value theorem. In conclusion, area-restricted searches over

clustered semantic spaces may account for two different patterns of results interpreted as support-

ing two different theories of optimal memory foraging.
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1. Introduction

Semantic knowledge is composed of conceptual categories and their inter-relations.

There are categories for natural kinds like animals and plants, for artifacts like tools and

clothes, and social divisions like friends and enemies, just to name a few. Conceptual cat-

egories can have different kinds of relations to each other, such as hierarchical relations

when one category is subdivided into smaller ones and contained within larger ones
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(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). Perhaps the most basic type of

relation is one of similarity—dogs generally are more semantically similar to wolves than

they are to wrenches, for instance, although similarity is always dependent on context

(Goldstone, Medin, & Halberstadt, 1997; Rips, 1975; Tversky, 1977).

Similarity relations and hierarchical relations, among others, have been theorized in

terms of a semantic space populated with conceptual categories and their members

(Lund & Burgess, 1996). This space is searched to find conceptual information needed

during language comprehension and production, for instance, along with many other

cognitive activities (Collins & Loftus, 1975). From this theoretical perspective, one is

led to ask how semantic spaces are organized and how this organization affects search

processes and behaviors (Collins & Quillian, 1969). One can assume that semantic

memory has evolved and developed to minimize time and access useful semantic

information.

The same basic question about search processes has been posed in the animal foraging

literature (Pyke, 1984), where semantic spaces are replaced by habitats, and semantic

information is replaced by food and other physical resources that animals forage for:

How are animal search processes adapted to their environments? Foraging researchers

assume that animals have evolved to use efficient search strategies, where efficiency is

defined as maximizing resources found per unit time. A globally optimal foraging process

is difficult to define, but one can instead formulate optimal strategies for specific situa-

tions, given simplifying assumptions.

Two such classes of optimal foraging strategies have been debated in recent years.

One class is based on marginal value theorem (Charnov, 1976), which assumes that

resources are distributed in clusters, also referred to as “patches.” This assumption is con-

sistent with the basic fact that semantic knowledge is organized into conceptual catego-

ries (Hills, Jones, & Todd, 2012). Clustering is hypothesized to be adaptive, partly

because semantically similar categories tend to be accessed at similar points in time as

thoughts and actions unfold (Lucas, 2000). This common property of semantic processing

means that clustering should facilitate recall of multiple items by way of inherent priming

or cueing as individual items are accessed in succession. Indeed, studies have found faster

successive recall times for semantically similar versus dissimilar items (Gruenewald &

Lockhead, 1980; Howard & Kahana, 2002).

Marginal value theorem focuses on the potentially adaptive nature of clustering by

simplifying the forager as an agent continuously faced with just one decision—either to

continue foraging the current patch, or move to another patch that is hopefully more

bountiful. Focusing on this decision affords a simple, optimal strategy: Stay if the current

rate of resource acquisition is at or above the mean expected rate over all patches, and go

if the current rate drops below the mean expectation. Studies of animal foraging have

found evidence consistent with marginal value theorem (Schoener, 1987), although there

have also been a number of inconsistencies in the literature (Nonacs, 2001).

Marginal value theorem also can be applied to semantic memory search, specifically

for the category recall task in which participants are asked to recall as many members of

a category as they can from long-term memory. A well-studied example is to name as
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many animals as possible for some number of minutes. One can imagine semantic

memory as a space with animals arranged in various clusters like mammals, herbivores,

farm animals, marine animals, and so on. The category recall task effectively asks partici-

pants to forage through semantic memory space for animal targets. If one assumes an

attentional focus on one region of space at a given time, then one can simplify the mem-

ory search process as a repeated stay-or-go question. Animal names should be recalled

repeatedly from an attended region until recall rate drops below the mean expected rate.

Then the focus of attention should move to another region, presumably incurring a time

cost to search and refocus, but gaining the benefit of a hopefully higher rate of recall in

an unforaged region.

Hills et al., (2012) found evidence in semantic memory search data that was consistent

with marginal value theorem (but see Austerweil, Abbott, & Griffiths, 2012). The authors

analyzed time intervals from an animal category recall experiment. The intervals occurred

either within or between clusters of animals as they unfolded during a recall session.

Those occurring at the start of clusters were below the mean on average, and intervals

tended to increase as items in a cluster were recalled, until intervals went above the mean

at which point participants were likely to transition between clusters. This pattern of

results is consistent with the marginal value theorem, but the theorem does not address

how clusters are organized in relation to each other in semantic memory, or how each

given cluster is chosen for foraging.

We can go back to the analogy with animal foraging to further consider the aspects of

search left unaddressed by marginal value theorem. In particular, clusters of resources in

habitats have spatial relations with each other, and animals choose clusters by moving to

them. Animal foraging is inherently about movement through space, which is abstracted

away by marginal value theorem for the sake of framing optimality. This point raises the

question of whether optimality can be framed explicitly in terms of movement through

space. Viswanathan et al. (1996) proposed L�evy foraging as an optimal movement-based

strategy that accounts for a ubiquitous pattern of behavior observed throughout foraging

studies.

L�evy foraging is based on analyzing animal foraging movements as a series of seg-

mented paths of lengths L. From this perspective, one can ask if there is an optimal distri-

bution of foraging path lengths, independent of movement directions, given certain

simplifying assumptions. To address this question, let us first consider whether certain

path length distributions are commonly observed in nature. It turns out that many studies

of animal foraging for many species in many habitats have found path lengths to be dis-

tributed like an inverse power law function, P(L) = 1/La with a ~ 2 (e.g., see Humphries,

Weimerskirch, Queiroz, Southall, & Sims, 2012; Kello et al., 2010). The same is true for

category recall, as first shown by Rhodes and Turvey (2007) and then replicated by others

(Radicchi & Baronchelli, 2012; Thompson & Kello, 2014). To draw an analogy with

memory foraging, Rhodes and Turvey reasoned that times between recall events should

roughly correspond with foraging path lengths, in which case inter-response intervals

(IRIs) should exhibit the same power law observed in animal foraging. Results bore out

this expectation.
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It is hotly debated exactly how well these observed distributions, be they spatial

lengths or temporal intervals, are described by a power law function (e.g., see James,

Plank, & Edwards, 2011). Limitations on measurement and on environmental scales will

place limits on observable scales of variation, which means that only truncated, imperfect

power laws can be observed. And indeed, there is consensus that findings are often char-

acterized by “power law-like” path length distributions, with varying degrees and kinds

of truncation depending on the particular study and method of analysis. The debate con-

cerns whether other functions may better characterize the data, particularly those that can

model deviations from a power law at the smallest or largest scales of measurement.

Herein, we will focus on the general pattern of results showing power law-like path

length distributions, and set aside the more contentious issue of the best fitting statistical

function.

Findings from foraging studies suggest that there is something beneficial about power

law-like path lengths. To formalize what this might be, Viswanathan et al. (1999) simpli-

fied foraging trajectories by treating them as random walks, that is, series of movement

steps with each direction chosen uniformly at random, and each step length sampled from

some probability distribution. Random walks with power law distributed path lengths are

known alternately as L�evy walks or L�evy flights, and Viswanathan et al. showed that L�evy
walks with a = 2 maximizes the rate of finding items when they are sparsely and ran-

domly distributed in an unbounded two-dimensional space. This maximum is relative to

random walks with other path length distributions.

The analysis by Viswanathan et al. (1999) suggests an optimal basis for observed

power law-like path length distributions, but only for classes of memoryless search pro-

cesses. Simple search agents like bacteria may be effectively memoryless, but it is ques-

tionable whether human search through semantic memory is enough like a random walk

for L�evy flights to be useful models. For instance, participants very rarely repeat an item

already recalled, but a random walk has some probability of retracing its steps (albeit

L�evy walks reduce this probability compared with other kinds of random walks). Also, a

random walk is blind to clustering and other patterns in the spatial distribution of items

being searched for.

1.1. L�evy flights and marginal value theorem in memory foraging

L�evy flights and marginal value theorem are based on different sets of assumptions

and focus on different aspects of search behaviors, yet both have been applied to data

from semantic category recall experiments. L�evy flights describe distributions of IRIs as

foraging path lengths, whereas marginal value theorem describes mean times spent forag-

ing clusters of items to be recalled. Each approach to memory search hypothesizes an

optimal behavior, but they seem unrelated to each other, perhaps even at odds with each

other. Marginal value theorem assumes clusters and maximizes the rates of items found

within them. However, it does not specify their spatial/representational relations to each

other, or how clusters are found and chosen from one to the next. L�evy foraging specifies

spatial movements of the forager but canonically assumes random and sparse scattering
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of items rather than clustering (but see Ferreira, Raposo, Viswanathan, & da Luz, 2012;

Santos et al., 2007). L�evy flights are random, memoryless walks whose movements are

uninfluenced by items found or other potential information gains as foraging goes on.

In this study, we investigated whether clustering in semantic space is a factor that

underlies evidence for both L�evy flights and marginal value theorem in category recall

experiments. Our experiment employed a version of the spatial arrangement method

(Goldstone, 1994; Hout, Goldinger, & Ferguson, 2013) to elicit semantic spaces from

individual participants (cf. Morais, Olsson, & Schooler, 2013). Each participant arranged

items on a two-dimensional surface such that distances apart corresponded with item sim-

ilarities. Manipulating objects on a 2D surface is a highly familiar task, and sensorimotor

processes in general, including visuospatial processes, may provide an embodied basis for

conceptual processing (Clark, 2008). Besides this theoretical rationale for using the spatial

arrangement method, we also needed a 2D space to test for L�evy flights because they

have been formalized and analyzed in two dimensions.

One might question whether semantic knowledge can be accurately represented in a

2D space. For instance, previous studies have used representations with greater dimen-

sionality such as semantic networks (see Steyvers & Tenenbaum, 2005), high-dimensional

vectors of semantic features (e.g. Cree, McRae, & McNorgan, 1999), textual co-occur-

rence vectors (Burgess, 1998; Jones & Mewhort, 2007; Landauer & Dumais, 1997), and

learned distributed representations in connectionist models (Rogers & McClelland, 2004).

2D spaces may provide less fidelity compared with other representations, but for our pur-

poses it is only necessary that participants can project their knowledge onto two-dimen-

sions with enough fidelity to test L�evy flights and marginal value theorem.

Each participant was given a set of animal names printed on labels affixed to magnets.

The sets of animal names were generated in a previous category recall experiment

reported by Thompson and Kello (2013, 2014). In the classic category recall task (Bous-

field & Sedgewick, 1944), participants recall as many items from long-term memory as

they can within a minute or two. The number of responses serves as a standard measure

of semantic fluency, and items tend to be recalled in semantic clusters (Patterson, Melt-

zer, & Mandler, 1971). Thompson and Kello gave participants 10 min to recall animal

names, in order to generate enough responses to test for power law-like IRI distributions.

Each participant recalled about 100 animals.

In the present experiment, participants did not know where the animal names came

from—each participant simply placed each given set of names on a whiteboard, in what-

ever arrangement best reflected the similarities among animals according to their semantic

knowledge. Similarity is a relative semantic judgment, and hence fundamentally influ-

enced by context. For instance, semantic similarities to “chicken” are different for the

category “animal” compared with “food.” Participants had as context the category label

“animal,” and the set of animal names provided up front. Thus, each participant’s context

was matched with a particular recall set, without providing information about specific

clusters or recall order.

Even though we provided no information or instructions about clustering, one should

expect participants in our experiment to cluster animals on the whiteboard into various
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categories like land mammals, sea creatures, and so on. Each participant may arrange

animals into different clusters, and clusters may align to differing degrees with those that

emerged in the category recall series collected by Thompson and Kello (2013). Nonethe-

less, if there is common semantic structure to the animal category, then some correspon-

dence should emerge between category recall series and subsequent arrangements of

names on the whiteboard.

Each category recall series was matched with its corresponding spatial arrangements

by expressing it as a trajectory over the whiteboard space. This was done after the spatial

arrangement experiment was completed, using digital pictures taken of each arrangement.

We used a whiteboard instead of a computer screen because the whiteboard afforded easy

manipulation of individual labeled magnets or groups of them, thus minimizing any phys-

ical deterrent to arranging items. The whiteboard also provided a more visceral, embodied

sense of the space over which animals were arranged.

Marginal value theorem predicts that, for search paths entering and leaving spatial

clusters, IRIs should be shorter and longer, respectively, relative to their means. There is

already some evidence for this prediction (Hills et al., 2012), but by projecting category

recall series onto a physical space, we can measure movements both within and between

categories. Measuring both kinds of movements allows us to test for the power law-like

distributions of path lengths predicted by L�evy foraging, while simultaneously testing for

evidence of marginal value theorem.

2. Methods

We first summarize the methods and results of the category recall experiment reported

by Thompson and Kello (2013), and then report the methods and results of the present

spatial arrangement experiment. Nineteen participants were recruited for the prior cate-

gory recall experiment, each of whom was given 20 min to type as many names of ani-

mals as they could recall from long-term memory. Responses were displayed on a

monitor as they typed. IRIs were measured as the times from the last keystroke of one

response, to the first keystroke of the next (IRIs did not include times taken to type

responses). Animal names were corrected for spelling errors, and any names repeated by

a given participant were removed (32 in all across 19 participants). The mean number of

responses per participant was 117 (SD = 38.6), and IRI distributions were found to repli-

cate the basic power law pattern reported by Rhodes and Turvey (2007). More specific

results can be found in Thompson and Kello (2013).

For the spatial arrangement experiment, three sets of animal name responses were cho-

sen from three participants in the previous category recall experiment. Sets were chosen

from participants who recalled roughly equal numbers of responses close to the mean

(103, 105, 107). Of all these responses, 27 animal names were recalled independently by

all three participants, 80 were recalled by two participants, and the remaining 208 were

recalled uniquely by one participant. Each of the three participant sets were used as stim-

uli for the present experiment.
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2.1. Participants

Fifteen University of California, Merced undergraduates participated for course credit.

Participants reported having normal or corrected vision and were physically able to stand,

walk, and reach the majority of space on a whiteboard that served as the 2D semantic

space.

2.2. Stimuli

Three sets of magnets were created by pasting a 2 9 2 inch square of poster board

(3 mm thick) onto each magnet, and then pasting a label to each square with the name of

an animal printed in 36 point Calibri font underneath a blue circle 1.5 inches in diameter.

The blue circle was used to locate magnets in photos, explained later. In addition, 10

magnets with frequent plant names were created to use as a practice set.

2.3. Procedure

Each participant was randomly assigned to one of the three sets of animal magnets.

First, the practice set of magnets was placed on a 3 9 3 foot square table, their positions

scrambled randomly on the table for each participant. Next to the table was a 5 foot tall

by 9 foot wide whiteboard attached to a wall, with its lower edge 40 inches off the

ground. Participants were instructed to arrange the set of 10 plants on the whiteboard

according to their similarities, such that more similar plants should be placed closer

together. No other instructions were given about how to arrange the magnets or how to

interpret similarity, except that all magnets needed to be placed somewhere on the white-

board. Participants were allowed to prearrange magnets on the table before putting them

up on the whiteboard and/or rearrange magnets on the whiteboard as they go up. Magnets

were designed to afford ease of manipulation, individually or in groups, on the table or

on the whiteboard.

After participants were done with the arranging of all the practice magnets onto the

whiteboard, a tripod-mounted Nikon D5000 12.3 megapixel camera (Nikon, Melville,

New York USA) was used to take a picture of the arrangement. The camera was placed

49 inches off the ground and 84 inches from the whiteboard, such that the whiteboard

filled the camera’s field of view. Upon completion of the practice trial, participants were

given a whiteboard marker and instructed to circle any groupings of similar plants they

had made. They were also instructed to label the groupings and draw lines connecting

any two groupings if they perceived a broader similarity relationship between the group-

ings. A second photograph was taken after each participant was done with the marker.

After finishing with the practice set of plant names, the experimenter removed the

practice magnets from the whiteboard and placed the assigned set of animal magnets on

the table, scrambled randomly. Participants were given as much time as needed to arrange

the animal names, and they took about 15–30 min to complete the task. A photograph of

the whiteboard was taken every 4 min, plus a photo upon completion. Photos were also
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taken before and after using the whiteboard marker to circle, label, and connect group-

ings. Three final example photographs are shown in Fig. 1.

3. Results

The final photographs were analyzed in terms of the positions of magnets on the white-

board and in terms of groupings as indicated by circling. A simple computer vision algo-

rithm was used to find the centroid of all blue circles within a given size range, and

animal names were assigned to circle coordinates by hand. All 15 participants used

groupings as their main organizational principle, although the shape of groupings varied

from single rows or columns, to grids, to more haphazard configurations. Regardless of

shape, the magnets within a given grouping were always spatially close to each other, on

average, relative to magnets outside the grouping. The number of groupings ranged from

10 to 35 with a mean of 19, and the number of items per grouping ranged from 1 to 30

with a mean of 5.93. Groupings were labeled mostly according to animal taxonomies

(e.g. “dogs”), but some labels were based on exemplars (e.g., “human-like”), contexts in

which they are encountered (e.g., “farm” or “zoo”), physical similarity (e.g., “four-leg-

ged”), and other idiosyncratic categories (e.g. “unpleasant”). The labels indicate that spa-

tial arrangements were based on a diversity of similarity relations, but the labels

themselves are not used in subsequent analyses.

Each set of animal names was recalled in a particular sequence by a participant in the

prior experiment by Thompson and Kello (2013). The original recall sequence was traced

over each arrangement of names on the whiteboard, and Euclidean distance was recorded

for each path segment, in camera pixel coordinates (example paths shown in Fig. 1). The

mean length of each path segment was 832.1 pixels (SD = 704.6), and the aggregate dis-

tribution of path lengths for each animal set is shown in Fig. 2, in logarithmic coordi-

nates. These path length distributions can be compared with IRI distributions observed in

the prior category recall experiment, as shown in Fig. 3.

Two main results are illustrated in Fig. 2. First, the distributions of path lengths and

IRIs both resembled inverse power law functions, albeit with roll-off for the highest val-

ues in the distribution (i.e., some degree of truncation). The exponents of these power

law-like patterns can be estimated by the slopes of regression lines fit to logarithmically

binned histograms (Newman, 2005), which were all between �1.0 and �2.0. These

roughly estimated exponents are within the range for L�evy flights, although they have

often been observed to have slopes more consistently closer to �2.0. The regression line

slope is only meant to provide a rough comparison with power law fits in other studies—
we make no claims about the goodness of fit to a power law, given that the whiteboard

substantially limited the range of spatial scales measureable. The point we wish to make

is that the power law-like distribution of path lengths appears to come from traversal over

a spatially clustered set of items.

The other result is evidence for a relationship between spatial configurations of white-

board arrangements, and orders in which animals were recalled from memory. This
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(A)

(B)

(C)

Fig. 1. Three example spatial arrangements of animals, one from each of the three animal datasets (A, B,

and C) drawn from Thompson and Kello (2013). Recall paths from the category recall experiment are shown

in green. Recall paths were drawn onto photographs afterwards, not visible during the experiment. Red lines

show groupings and their labels, as determined by participants after their arrangements were complete.
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evidence is seen in comparing observed path lengths with those derived from randomized

control sequences. For each whiteboard arrangement, a random path was traced through

all the animal names, visiting each magnet exactly once. Random path lengths had a

mean of 1126 (SD = 638.9), which is substantially longer than the mean of 832 for

observed path lengths. As shown in Fig. 2, the biggest discrepancy is for the shortest path

lengths: On average, 29% of original path segments traversed adjacent magnets (as deter-

mined by a distance threshold of 250 pixels), whereas for random path lengths it was less

Fig. 2. Probability density function for whiteboard path lengths (left), aggregated for each of the three sets

of animal names tested and plotted in logarithmic coordinates using logarithmically spaced bin sizes. The

same is shown on the right for IRIs from Thompson and Kello (2013).

Fig. 3. Log IRI for category recall data from Thompson and Kello (2013) plotted against mean path lengths

from the current experiment, averaged across each of the five participants who saw each of the three animal

sets.
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than 6%. Moreover, randomized path lengths were much closer to the normally distrib-

uted group than the power law distributed, unlike observed path lengths. Thus, the

observed inverse power law for path length distributions did not come from a random

walk over clustered items.

If our spatialized recall paths represent memory foraging over the semantic space of

animals, then path lengths should correlate with IRIs from the prior category recall exper-

iment. This prediction is based on the premise that longer times between successive

recalls reflect longer distances to travel in semantic space. Log IRI is plotted against path

length in Fig. 3, where each point represents a single IRI from one of the three category

recall participants, plotted against the mean of the five path lengths for the five partici-

pants who arranged the corresponding set of animals. Correlations were positive and

moderately strong, with coefficients ranging from 0.45 to 0.48 across the three animal

sets, all highly reliable at p < .001 (df = 104–108). IRIs were logarithmically transformed

so that their dynamic range would be comparable to that of the mean path lengths. The

latter span a limited range of scales because of averaging, and because of space limits

imposed by the whiteboard. Correlations provide further evidence that paths traced over

whiteboard arrangements provided a spatialized representation of memory foraging for

the category of animals.

For our third and final analysis, we turn to the groupings circled by participants after

arranging the magnets. As discussed earlier, semantic categories contain clusters at vari-

ous scales and sizes, and clusters at one scale are represented by the groupings partici-

pants circled. The sizes of groupings were limited by the number of animals to arrange,

the size of the board, and most likely an implicit expectation to produce a countable,

manageable number of groupings (although participants were not explicitly instructed to

do so). Nevertheless, these groupings afford a test of whether spatialized paths follow a

pattern expected by optimal foraging theory: IRIs should be shorter than their mean when

initially foraging a patch (grouping), and IRIs should be longer than expected when leav-

ing a patch. This pattern is predicted because foragers should stay in a patch as long as

the rate of recall is relatively fast and leave a patch when the rate of recall becomes rela-

tively slow (Charnov, 1976).

To test for evidence of adaptive foraging, each path segment was labeled relative to

transitions into and out of groupings. The first path segment into a newly visited grouping

was labeled as 1, and the last path segment before leaving a given grouping was labeled

as �1. Subsequent and prior path segments were incrementally numbered higher and

lower, respectively. Hills et al. (2012) reported this analysis for animal category recall

data, using predefined animal patches, and their results are plotted alongside ours in

Fig. 4. As predicted by adaptive foraging, IRIs were below their means when first recall-

ing animals in a new patch, and above their means when leaving a patch. The one differ-

ence was that IRIs just prior to leaving a patch (�1) tended to be above the mean in the

current experiment, but not in Hills et al. This difference may be due to differences as to

how patches were defined, or differences in the lengths of recall sessions (~3 min in Hills

et al., 10 min herein). But generally speaking, both patterns of results are consistent with

adaptive foraging.
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4. Discussion

In the present experiment, searching through semantic memory was expressed as

movement through a 2D semantic space. We collected individual datasets on semantic

memory search in an animal recall task, and we compared these datasets against individ-

ual spatial arrangements of animal names on a whiteboard. Even though different partici-

pants performed the category recall task and the spatial arrangement task, strong

correspondences were found between the corresponding temporal, and spatial behavioral

measures. Thus, there appears to be a common structure to the semantic memory and

knowledge that behaviors drew upon.

The elicited semantic arrangements served to demonstrate evidence for two kinds of

results supporting two different theories of optimal memory search. One kind of evidence

is found in distributions of path lengths and search times that resemble inverse power

laws. Some researchers explain these distributions in terms of L�evy flights as random,

efficient search strategies. The other kind of evidence is found in path lengths and search

times as function of entering versus leaving clusters of animal recalls—IRIs and white-

board distances were shorter upon entering clusters and longer upon leaving them. Some

researchers explain results like these in terms of marginal value theorem as a kind of nor-

mative search behavior.

Our whiteboard results indicate that evidence for both L�evy foraging and marginal

value theorem can arise from search movements over a space of clustered items. The evi-

dence goes beyond L�evy flights per se, because results indicate that search trajectories

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-2 -1 1 2 3
Order of Entry Rela�ve to Patch Switch

Fig. 4. Path lengths normalized by their means, and aggregated according to order relative to transitions

between predefined patches (taken from Hills, Todd, & Jones, 2009) and for circled groupings in the current

experiment (right).
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were non-random and had memory. The evidence also goes beyond marginal value theo-

rem because search performance reflected more than just the distinction of moving within

versus between clusters—search also reflected spatial distances between individual items

and categories. Also results did not perfectly fit either theory: Path length distributions

deviated from strict power laws, and search trajectories remained within clusters longer

than predicted on average.

We believe both of these theories have value, in that they point out important aspects

of search that any complete theory must account for. We do not place stock in deviations

from a power law because they may reflect, for example, particularities of the category

recall experiments and spatial arrangements on whiteboards. We also do not place stock

in deviations from the marginal value theorem because they may reflect how categories

are defined, and non-stationarity in expected recall rate. Instead, we consider what theory

might encompass findings previously used to support each theory.

A model that simulates our results lies beyond the scope of this paper, but one promis-

ing theoretical framework is area-restricted search (Benhamou, 2007; Gr€unbaum, 1998).

The general idea is that the search process becomes biased toward shorter movements as

items are found, and longer movements as items are not found. In other words, the search

area becomes effectively restricted when items are found, which is based on the assump-

tion that items are clustered in space. If so, the rate of finding items will increase by

searching more intensively near items already found. Hills, Kalff, and Wiener (2013)

recently applied area-restricted search to data from human foraging in a virtual environ-

ment, and other studies have shown that power law distributions in path lengths can

emerge from area-restricted search processes (see Benhamou, 2007). It is not clear

whether area-restricted search can be formulated to yield optimal memory search behav-

iors, but it has the potential for both patch-like search dynamics and power law-like path

length distributions. It would be informative to further investigate whether area-restricted

search can be usefully applied to memory foraging and other cognitive search tasks.
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