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a b s t r a c t 

Recordings of speech exhibit nested clustering of peak amplitude events that reflects the hierarchical 

temporal structure of language. Previous studies have found variations in nested clustering to correspond 

with variations in prosody and social interaction. In the present study, we tested two specific dimensions 

of variation in speech hypothesized to have differing effects on hierarchical temporal structure: Speak- 

ing rate and naturalness. Rate was manipulated both algorithmically and experimentally, and naturalness 

was manipulated using synthesized speech, with sine wave speech as a comparison. Allan Factor analysis 

was used to quantify nested clustering of peak amplitude events in speech recordings as a function of 

timescale. For fast speech, nested clustering was found to shift into shorter timescales, whereas for syn- 

thesized speech, nested clustering was found to decrease in the longer timescales. Results are discussed 

in terms of complexity matching and its implications for how neural and perceptual processes might 

respond to changes in the hierarchical temporal structure of speech signals. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Measurements of speech and language commonly follow power

aws [13] . These power laws suggest that underlying neural, be-

avioral, and social processes may be usefully theorized in terms

f complex networks [2] , because power laws are a natural conse-

uence of their non-stationary, non-ergodic statistics [22] . A fun-

amental question about complex networks, as well as cognitive

nd social systems, is how they respond to inputs from their envi-

onments. For example, the dynamics of complex perceptual net-

orks are responsive to their sensory inputs, and language net-

orks are responsive to inputs from verbal interactions. The former

s an example of unidirectional influence, because sensory systems

o not directly affect the sensory world, only indirectly via the

erception-action loop [9] . The latter is an example of bidirectional

nfluence because participants in language interactions directly af-

ect each other. 

This view of cognitive and social systems as complex networks

eads to predictions based on theories of how complex networks

espond to external inputs. Specifically, West et al. [21] formulated

he principle of complexity matching , which generally states that

omplex networks are most responsive to perturbations that match
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heir own temporal complexity. Complexity is measured in terms

f exponents that define power laws in network activity and input

ctivity, and matching corresponds to similarity in the exponents

haracterizing the networks in question, and their environmental

nputs. The original work defined network activity in terms of 1/f

oise and fractal time series of events, the latter being analyzed in

erms of waiting times (inter-event-intervals) τ , where P( τ ) ∼ 1/
μ, and 1 < μ< 2 [21] . 

Recently, behavioral scientists have tested for complexity

atching in human coordination and speech, based on the premise

hat human complex networks are highly adaptive [2] . Human

omplex networks may adapt by “bending” the statistics of their

ynamics towards those of their inputs, to better match the en-

ironment and other complex networks. Matching is hypothesized

o increase the response sensitivity of complex brain and behav-

oral networks. When inputs are power law distributed, matching

anifests as a convergence in power law exponents of brain and

ehavioral networks towards the exponents of their inputs. Such

exibility in power law exponents would not be expected for less

daptive complex systems. 

The first experiments to test for complexity matching in human

ehavior examined the dynamics of finger tapping [19] , and pen-

ula being swung together [15] . The tapping experiment used a

ractal metronome that participants tried to follow as closely as

ossible. Fluctuations in inter-tap intervals exhibited 1/f noise, and
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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power law exponents matched those of their fractal metronomes,

i.e. unidirectional influence of the metronome on tapping. By con-

trast, the pendula experiment showed that power law 1/f expo-

nents of angular fluctuations converged with each other, instead of

a fixed stimulus like a metronome. The swinging of one pendulum

by one participant was affected by the swinging of the other pen-

dulum by the other participant, and vice versa, via perceptual and

physical coupling, i.e. bidirectional influence. Together, these two

studies provide evidence that human complexity matching can oc-

cur in response to stimuli in the environment, and also in response

to human interactions. 

One of the most natural kinds of human interaction is speech,

which has also been found to exhibit complexity matching [1] .

The authors recorded pairs of individuals having conversations

about friendly topics with common ground, versus polarizing top-

ics with conversational partners on opposite ends. They converted

the speech waveform for each speaker into a series of acoustic

onset events, and found inter-onset-intervals (IOIs) to be power

law distributed like critical events of complex networks. Complex-

ity matching was found not in IOI exponents, but in the power

law clustering of events that reflects the hierarchical temporal

structure of language. Specifically, Allan Factor (AF) functions for

event series were closer together for conversational partners com-

pared with baseline, but only for friendly topics for which speakers

shared common ground. Polarizing conversations showed no de-

tectable complexity matching, suggesting that the coupling of hu-

man complex networks depends on psychological and social fac-

tors, and possibly other factors as well. 

Abney et al. [1] used the AF function to measure hierarchical

temporal structure in speech waveforms recorded from conversa-

tions, over timescales of 30 ms–30 s. Variations in this range of

timescales are perceptible to the human auditory system, and com-

plexity matching suggests that auditory brain networks adapt the

statistics of their dynamics to those of their acoustic inputs [5] .

Given the relationship between complexity matching and psycho-

logical processes reported by Abney and colleagues, we hypothe-

size that hierarchical temporal structure in speech, as measured by

AF functions, should be reflected in auditory experience by way

of complexity matching in auditory networks. In support of this

hypothesis, Kello and colleagues [14] found that the shapes of AF

functions reflect at least three perceivable variations in complex

acoustic signals: social interaction, prosodic variation, and musical

composition. Greater nested clustering in peak amplitude events

(as opposed to acoustic onset events) can be perceived as acoustic

interactions among people, prosodic emphasis in speech, or metri-

cal structure in music. These results are consistent with our work-

ing hypothesis, but they are quite general and do not inform how

specific variations in AF functions relate to specific variations in

perceivable features of speech, music, and other complex acoustic

signals. 

In the present study, we test two types of perceptual varia-

tions in speech that we predict to have differing effects on hi-

erarchical temporal structure: Speech rate and naturalness. Previ-

ous studies have demonstrated consistent effects of speech rate

on prosodic variation, the latter being shown to affect hierarchical

temporal structure. For instance, Jun [12] found that more syllables

are packed into fewer accentual phrases at faster versus slower

speaking rates, thereby reducing variability by reducing the num-

ber of accentual phrases. Dellwo and Wagner [4] varied speech

rates in English, French, and German, and found reduced variabil-

ity in consonant durations for faster versus slower speaking rates.

A modeling study in Mandarin indicated that the effect of speaking

rate affects variability across several hierarchical levels of prosodic

organization [3] , consistent with a study of speaking rate in Man-

darin [20] . In summary, previous studies indicate that faster speech

should reduce prosodic variability across hierarchical levels, and
hereby reduce hierarchical temporal structure across a wide range

f timescales. 

Speech naturalness is also predicted to affect hierarchical tem-

oral structure, but in a different way compared with speak-

ng rate. In particular, human-generated speech is predicted to

ave more hierarchical temporal structure compared with text-to-

peech synthesis, particularly in the longer timescales. Variabil-

ty in prosodic intonation and timing is difficult for text-to-speech

ynthesizers because they do not model the meanings of sentences

r discourse contexts [23] . As a result, synthesized speech is often

erceived as having flat affect compared with human-generated

peech. Relatively flat affect should correspond with reduced hi-

rarchical temporal structure in timescales on the order of a sec-

nd and longer, as previously shown by Falk and Kello [8] . They

easured AF functions in recordings of German-speaking mothers

eading a story or singing a song, either to their infants or to other

dults. The exaggerated prosody of infant-directed speech resulted

n generally steeper AF functions, but the authors did not report a

ore fine-grained analysis. With respect to naturalness, Kello et al.

14] showed that AF functions for synthesized speech were flatter

han those for natural speech, but again, the authors did not quan-

ify the effect, nor did they compare it with speaking rate. 

. Allan factor analyses of speaking rate and naturalness 

Here we report AF analyses of fast versus slow speech, as well

s natural versus synthesized speech. The analyses are designed

o measure more stringent hypotheses about perceivably different

ffects of these manipulations on hierarchical temporal structure.

pecifically, faster speech is predicted to result in less variability

cross all perceptible timescales, which should correspond with

hallower, flatter AF functions. By contrast, synthesized speech is

redicted to result in less variability in the longer timescales only,

hich should lead to shallower but more curved AF functions due

o selective effects on longer timescales. The effect of speech rate

s tested using both algorithmic and experimental manipulations,

hereas the effect of naturalness is tested using two different algo-

ithmic manipulations. For the latter, we compare results with syn-

hesized versus sine wave speech [18] . Sine wave speech is a syn-

hetic control that retains most of the hierarchical temporal struc-

ure in the original signal. 

. Methods 

Analyses of speaking rate were based on Barack Obama’s ad-

ress at George Mason University on the 21st Century Economy

1/08/09, 17:08 mins). The élastique algorithm ( https://products.

plane.de/ ) was used to manipulate speaking rate without affecting

he vocal pitch. The “fast” condition was 2x faster than the origi-

al recording, and the “slow” condition was 2x slower. In addition

o these algorithmic manipulations, an experiment was conducted

n which ten University of California students read two excerpts

rom the speech off a teleprompter. Half of the participants read

he first excerpt at a slow pace and the second at a fast pace, and

ice versa for the other half. On average, the fast-paced and slow-

aced excerpts took 4.5 and 10.1 min to complete, respectively. Par-

icipants were instructed to read the speech from the teleprompter

s smoothly as possible, and their readings were recorded for sub-

equent acoustic analyses. 

Analyses of naturalness were based on ten recordings of TED

alks (mean length = 6.41 min, SD = 1.14 min) reported by Kello

t al. [14] . The TED intro and outro theme was trimmed from

he recordings, along with any applause at the beginnings or ends

f the talks. A synthesized version of each talk was created by

ubmitting the transcript to Google speech synthesis, and record-

ng the output. The synthesized versions (mean length = 6.62 min,

https://products.zplane.de/
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Fig. 1. Left: AF functions of the original Obama speech, and fast and slow versions. Right: AF functions of the fast and slow teleprompter conditions. 
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Fig. 2. Mean AF functions for TED talks and their two different synthesized ver- 

sions, Google text-to-speech and sine wave speech. The AF function for Obama’s 

speech is shown for comparison. 
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D = 1.16 min) were recorded using GarageBand version 10.1.0.

arageBand was also used to set the lengths of the synthesized

ecordings roughly equal to the original recordings (within + / −
0 s). Lastly, sine wave speech recordings (mean length = 6.46 min,

D 1.16 min) were created from the ten trimmed TED talks by us-

ng the Matlab sine wave speech code provided by Ellis [7] , with

efault parameters provided by Haskins Laboratories. The software

racks speech formants and assigns a single sine wave to each one.

he sine wave amplitudes and frequencies are modulated to track

he formants over time. The result is a combination of whistling

ounds that preserve most of temporal structure in speech. Sine

ave speech is typically perceived as speech-like, but the words

poken are difficult to discern unless the listener is given informa-

ion about what is being said. 

. Results 

Audio recordings were analyzed using the same method as re-

orted in Kello et al. [14] . Details can be found there, but briefly:

ach recording was divided into four-minute segments, and anal-

ses were averaged across segments to yield a single AF function

er recording. The Hilbert envelope was calculated for each seg-

ent and peaks above threshold were analyzed as time series of

coustic events. An AF function was computed for each segment: 

 ( T ) = 

〈
( N i ( T ) − N i +1 ( T ) ) 

2 
〉

2 〈 N i ( T ) 〉 , 

here T is the timescale, N i ( T ) is the event count in each win-

ow i , and A ( T ) is AF variance. AF variance captures the de-

ree of event clustering at a given timescale, and for time series

ith nested clustering, A ( T ) increases with T . Self-similar clustering

cross timescales yields a power law, A ( T ) ∼ T α , where 0 < α < 2.

he AF function was computed for 11 values of T in between 15 ms

nd 15 s, logarithmically spaced to compute the orthonormal basis.

AF functions for speaking rate analyses are shown in Fig. 1 .

he left panel shows the effect of algorithmic speaking rate ma-

ipulations on the original Obama recording, and the right panel

hows mean AF functions for the slow and fast teleprompter con-

itions, with the original Obama recording as a reference. AF vari-

nce for the Obama recording steadily increased as a function of

imescale, consistent with analyses of TED talk recordings reported

y Kello et al. [14] . Falk and Kello [8] found evidence to suggest

hat this AF shape is common to speech because it reflects the

esting of linguistic units like syllables in words, words in phrases,

nd phrases in sentences. Fig. 1 shows that an algorithmic increase

n speaking rate causes clustering to generally shift left into the

horter timescales, whereas an algorithmic decrease causes a right-

ard shift into the longer timescales. Fig. 1 also shows that the

eleprompter had a similar effect, except that there was a drop in
F variance at the longest timescales for slow speaking rates. We

ypothesize that this drop comes from the artificially even pace of

peaking caused by the slow, even pace of the teleprompter. This

venness creates isochrony and isochrony reduces clustering and

ence AF variance. We leave it for future research to test this hy-

othesis explicitly. 

AF functions for naturalness analyses are shown in Fig. 2 . The

ean AF function for the original TED talk recordings has the same

asic shape as that for the original Obama recording. This simi-

arity is consistent with Kello et al. [14] who found that mono-

ogues have common, distinctive AF functions compared with di-

logues and singing—TED talks and the Obama speech are both

ypes of monologues. AF functions for synthesized versions of TED

alks were very similar to the original recordings in the shorter

imescales, but they diverged in the longer timescales. Specifically,

ynthesized AF functions were flat compared with original record-

ngs, which indicates a lack of nested clustering in timescales cor-

esponding with prosody and intonation. By contrast, AF functions

or sine wave speech had the same overall shape as the TED talk

ecordings from which they were created, with a slight leftward

hift of clustering as if the sine wave speech rate was faster than

he original recording. 

The perceptual distinction between natural and synthesized

peech is very clear, as is the distinction between slow versus fast

peaking rates. Moreover, these two dimensions of variation are

erceptually distinct from each other. The effects of speaking rate

nd naturalness were also different from each other, as verbally

escribed above, but it is necessary to quantify this difference to

etter understand it and relate it to complexity matching. To do
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Fig. 3. Linear and quadratic coefficients for fast versus slow speech, and natural versus synthesized speech. The two different manipulations had the same effect on linear 

coefficients, but opposite effects on quadratic coefficients. 
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so, we fitted a second-order polynomial to each individual AF func-

tion, which allowed us to capture their convex shapes in terms of

linear and quadratic coefficients. 

Coefficients are plotted in Fig. 3 for fast and slow speaking

rates, as well as natural and synthesized speech. The graph shows

that speaking rate had the same effect on linear coefficients but

opposite effects on quadratic coefficients. Fast speech was compa-

rable to synthesized speech in that linear coefficients were closer

to zero compared with slow speech and natural speech, respec-

tively. This similar result was due to the overall flattening effect of

these conditions. However, fast speech was less convex than slow

speech, whereas synthesized speech was more convex than natu-

ral speech. This difference was due to the selective effect of syn-

thesis on longer timescales, versus the overall effect of speaking

rate across all measured timescales. Finally, sine wave synthesis

had a small effect on coefficients akin to the effect of fast speech.

It would be interesting to test whether sine wave is perceived as

being faster than normal speech, even though the same signal vari-

ations unfold over the same time periods. 

4. Discussion 

In the present study, we investigated the effect of manipulat-

ing speaking rate and naturalness on hierarchical temporal struc-

ture in speech. Using AF analysis, we showed that nested clus-

tering in peak amplitude events is affected differently by these

two manipulations—changes in speaking rate shifts the entire mea-

sured hierarchy into shorter or longer timescales, whereas changes

in naturalness flatten or steepen the longer timescales of the hier-

archy, i.e. on the order of seconds and longer. Other studies have

shown that acoustic events in speech appear to be crucial events

[1] , including a recent study by Pease et al. [17] in the present

special issue edited by Grigolini [10] . Taken together, these stud-

ies suggest that neural and perceptual processes may be highly

responsive to speech inputs by means of complexity matching.

Specifically, power laws in neural and perceptual dynamics may

take the general shape of power laws in speech dynamics by

means of complexity matching, while having distinct trajectories

because of myriad differences in neural versus acoustic “substrate”,

so to speak. The present results are consistent with this applica-

tion of complexity matching, in that the different perceptual expe-

riences associated with speaking rate and naturalness have corre-

sponding differences in hierarchical temporal structure. These per-

ceptual differences may have their roots in complexity matching of

auditory networks with incoming speech signals. 

The application of complexity matching to speech perception

leads to questions about how power laws in auditory networks are

affected when temporal structures in speech signals do not fol-

low a single power law. Kello et al. [14] showed that many cate-
ories of speech and music deviate from power law AF functions.

n fact, the only categories that closely followed a power law in

ested event clustering were classical music and thunderstorms.

onologues like those analyzed herein were consistently found to

ave a distinct flattening in the longer timescales, and the shape of

his deviation varies as a function of speaking rate and naturalness.

hat do such deviations imply for complexity matching? 

One possibility is that neural and perceptual dynamics become

ess responsive to speech dynamics when they deviate from a

ower law, because brains are attuned to power laws in sensory

nputs. Another possibility is that neural dynamics bend along with

he dynamics of speech being listened to. The latter would corre-

pond to a neural correlate of perceiving and following the sounds

f speech. The same question can also be asked of music, with

he same possible hypotheses [6] . Indeed, the effect of prosody on

emporal hierarchies in speech has been argued to have an ana-

og in music [11,16] . This analog leads to the idea that music per-

eption, as hypothesized for speech perception, may be partly sup-

orted by a form of complexity matching that enables temporal

ierarchies in neural dynamics to conform to those of speech and

usic. 
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