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Abstract 
Eye movements gather visual information from the 
environment for various purposes and goals. Spatial patterns 
of eye movements vary depending on the layout of visual 
information, and intentions of the observer. However, despite 
this variability, basic principles of visual information 
gathering may be reflected in lawful properties of eye 
movement trajectories that hold across various stimulus and 
intentional conditions. Two experiments are presented 
analyzing eye movement trajectories during scene perception 
across pictures with varying spatial frequency distributions 
(Expt 1), and across two different task conditions, "finding" 
versus "counting" tasks (Expt 2). Results show that, in all 
conditions, distributions of saccade amplitudes are heavy-
tailed and nearly identical in shape, and fixation fluctuation 
series are long-range correlated with nearly identical spectral 
slopes. While a small effect of task intention was found, the 
broader conclusion is that eye movements during scene 
perception exhibit general statistical characteristics that 
models have yet to address. 

Keywords: Eye movements, scene perception, lognormal 
distributions, Lévy flights, 1/f scaling, long-range correlation. 

Introduction 
Research on visual search and scene perception tends to 
focus on the effects of stimulus factors on eye movements. 
For instance, the debate over parallel versus serial search 
hinges on stimulus characteristics of targets, distractors, and 
the visual field (Triesman & Gelade, 1980). Models of scene 
perception relate the saliency of visual features and objects 
in scenes to probabilities of eye fixations (Itti, Koch & 
Niebur, 1998). 

By contrast, the basic character of eye movements is 
mostly taken for granted in research on scene perception, 
i.e. there are saccades between fixations, and microsaccades 
and other more fine-grained movements within fixations 
(Liversedge & Findlay, 2000). These categories are coarse 
and describe little about the structure of eye movement 
trajectories, beyond the fact that trajectories will string 
together periods of small-scale movements (fixations) 
interspersed with periods of large-scale movements 
(saccades and pursuits).  

One might assume that more quantitative statements 
about eye movements during scene perception will depend 
on particularities of scenes and intentions of observers. 
However, two bodies of research suggest otherwise. First, a 
large body of research on foraging behaviors has shown that 
search trajectories are nearly universally characterized by 
heavy-tailed distributions of path segment lengths (e.g., 

Sims et al., 2008). Various land and sea creatures have been 
tracked while foraging for food, and the lengths of paths 
from one locale to the next are measured. The probability of 
observing path length d often goes as P(d) ~ d-β, with β ~ 2.  

The precise formulation of the distribution is often a 
matter of dispute, but they are generally agreed to be heavy-
tailed. The Lévy distribution is part of a broader class of 
heavy-tailed distributions that indicate multiplicative 
interactions in generating the observed data (i.e. path 
lengths in this case; Shlesinger, Zaslavsky & Klafter, 1993). 
These results are relevant to eye movements because animal 
foraging and scene perception are both search behaviors. 
Indeed, even memory search has been shown to result in 
heavy-tailed distributions of “path lengths”, i.e. time 
intervals between recall events (Rhodes & Turvey, 2007).  

These results suggest that eye movement trajectories may 
also exhibit heavy-tailed path length distributions by virtue 
of being a kind of search behavior. Consistent with this 
hypothesis, Stephen and Mirman (2010) found that 
distances between successive eye tracking samples were 
lognormally distributed in a “visual world paradigm” task 
(lognormal distributions are heavy-tailed and also associated 
with multiplicative interactions). This study alone, however, 
leaves it unclear whether the observed lognormal 
distributions were due to characteristics of the tasks or 
stimuli, such as their constrained, repetitive nature. 

The second body of research to suggest general properties 
of eye movement trajectories concerns temporal correlations 
in neural and behavioral activity. It turns that many different 
measures of both kinds of activities have been found to 
contain long-range correlations in their intrinsic fluctuations 
(Kello et al., 2007). These correlations tend to follow a 1/f 
scaling relation, and 1/f scaling is also a kind of heavy-
tailed distribution associated with multiplicative interactions 
(Van Orden, Holden & Turvey, 2003). Any time series can 
be expressed in the frequency domain as a set of sine waves 
of varying amplitudes (power) and frequencies (phase is 
discarded for this analysis). 1/f scaling describes a time 
series for which power is related to frequency as P ~ 1/fα, 
where ideally α ~ 1. 

Widespread findings of 1/f scaling, across modalities and 
levels of analysis, suggest that its origins are task-general 
and domain-general. 1/f scaling has also been found in eye 
movements, i.e. in fluctuations of repetitive target fixations 
(Shelhamer, 2005), and in variations within and across 
standard visual search tasks (Aks, Zelinsky & Sprott, 2002). 
However, as with heavy-tailed path lengths, these results on 
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1/f scaling in eye movements may also be particular to the 
repetitive, constrained nature of the tasks. 

Scene Perception Experiments 
The aim of our study was to investigate whether heavy-

tailed distributions and long-range correlations are general 
facts about the statistical structure of eye movement 
trajectories. If so, then any theory or model of eye 
movements would need to explain how this structure is 
shaped to fit specific tasks and stimuli, while preserving its 
general character across conditions.  

We chose to use scene perception as a general kind of 
visual information gathering that goes beyond previously 
used tasks. Most importantly, scene perception can unfold 
over relatively long periods of time without experimental 
intervention, and it embodies the kind of information 
gathering that visual systems are constantly engaged in.  

We manipulated stimulus (Expt 1) and task (Expt 2) 
conditions in order to test whether findings are restricted to 
any particular conditions. Our basic dependent measure was 
Euclidean distances between adjacent pairs of eye tracking 
samples, which yields series of eye speed measurements. 
Speed series are appropriate for investigating general 
properties of eye movements because absolute position 
information is not preserved. 

Experiment 1 Methods 
Stimuli. Two hundred and fifty images were selected from a 
collection of National Geographic's Photo of the Day 
website. All images were originally 1600x1200 pixels in 
resolution, cropped to 1600x1100 to remove a watermark. 
Images were all natural scenes, color and spanned a wide 
range of content, including landscapes, action shots, close 
ups of animals and people.  

To test whether the statistics of trajectories are affected by 
stimulus factors, we categorized them according to their 
spatial frequency distributions. Spectral analyses of spatial 
frequencies in natural images have been shown to exhibit 1/f 
scaling analogous to that in time series (Field, 1987). If 
heavy tails in eye movement trajectories come from visually 
searching over scenes with heavy-tailed spatial frequency 
distributions, then varying the latter should affect the 
former. Ten images were chosen within each of three 
categories: Steep (α < -3), mid-range (-3 < α < -2.25) and 
shallow (α > -2.25) scaling relations.  

Subjects, Apparatus, and Task. Eleven University of 
California Merced undergraduates participated in the 
experiment for course credit. Each participant was seated 
approximately 36" in front of a 30" flat panel LCD monitor. 
Participants viewed each of the thirty images in random 
order for 45 seconds per image. Monocular gaze position 
was recorded at 500 Hz using an Eye Link II head mounted 
eye tracker (Figure 1).  

Subjects were instructed to view each image in the 
context of two tasks. One was a rating task whereby 
participants were asked after each image to characterize the 
complexity and memorability of the image on a scale of 1 to 

10. The other task was a scene memory task whereby 
participants were given 60 seconds to verbally describe each 
of six images after each one was presented (because image 
order was randomized, the memory task appeared randomly 
to participants). Each subject viewed all 30 images. 

 

 

Figure 1: Example visual search trajectory for an image of a 
spiral staircase inside ancient ruins. 

 

 
Figure 2: Example partial ISD time series (A) and saccade 

amplitude series (B). The dashed line in A indicates 
threshold, and B shows the lengths above threshold. 

Experiment 1 Results 
From the raw gaze position series (Figure 1), inter-sample 
distances (ISDs) were computed (Figure 2) and blinks and 
measurement malfunctions were removed. As one would 
expect given the well known fixation and saccade structure 
of human gaze trajectories (Henderson, 2003), ISD series 
were characterized by clusters of low values (fixations) 
interspersed with “bursts” of high values (saccades). Based 
on visual inspection, a threshold of 1.5 pixels was used to 
separate saccade speed “bursts” from fixation fluctuations 
(increasing this threshold by a few pixels had no qualitative 
effect on results). Each saccade length (i.e. amplitude) was  
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Figure 3: Example below-threshold fixation time series. 

 
measured as the distance from the first point over threshold 
to the next point below threshold (Figure 2), and ISDs 
below threshold were concatenated to yield fixation 
fluctuations. 

Saccade amplitudes correspond to the path lengths of a 
Lévy flight, so their distributions were examined. Fixation 
ISDs corresponded to intrinsic fluctuations in speed (with 
saccades removed), in that no experimental manipulations 
were applied within trial series, i.e. for each given picture 
(note that speed may be affected by the location of gaze on a 
given scene, but the experimenter does not directly 
influence where to gaze). Thus their temporal correlations 
were examined. 

Figure 4 shows saccade amplitude distributions in log-log 
coordinates for steep, mid-range, and shallow stimulus 
conditions, aggregated over all trials and subjects. Multi-
model inferdence (Burnham & Anderson, 2002; 
Wagenmakers & Farrell, 2004) was used to determine the 
statistical model most likely to generate these distributions. 
Four candidate statistical models were tested: exponential, 
lognormal, gamma and Pareto distributions. Lognormal, 
gamma and Pareto distributions are heavy-tailed,  
suggestive of a complex, multiplicative process. The 
lognormal distribution is one of the simplest multiplicative 
distributions, the Pareto distribution represents an idealized 
power-law function, and the gamma distribution is a hybrid 
of power-law and exponential distributions, indicating a 
truncated power-law. The lognormal distribution has all 
power moments defined while the Pareto and gamma 
distributions do not.  For each candidate, the negative log-
likelihood (the function maximized in maximum likelihood 
estimation) was calculated. Log-likelihoods were then used 
to calculate Akaike's information criterion, which is a 
measure of the information-theoretic distance between 
candidate distributions and the distribution of the data. The 
minimum AIC value indicates the most likely candidate 
distribution given the data.  

AIC strongly supported the lognormal distribution for all 
three condition aggregates. Aggregates were also created for 
each image and each subject, and lognormal was supported 
for 100% of the former, and 100% of the latter. Using 
maximum likelihood estimation, we calculated the 
parameters   corresponding   to   the   best    fit    lognormal 
distribution. There were no significant effects of condition,  
image or their interaction (mean σ  = 1.25).  AIC analysis of 
individual trials predominantly supported lognormal (60%) 
with some support for gamma (38%) and pareto (2%) 

distributions.   Thus there was absolutely no support for the 
exponential distribution without a heavy tail. 

 

 
Figure 4: Aggregate saccade amplitude distributions from 

Experiment 1. 
 

Spectral analyses of fixation amplitude series resulted in 
evidence for long-range correlations. Averaged spectra for 
each condition are shown in Figure 5 in log-log coordinates. 
1/f scaling appears as a negative linear relation in log-log 
spectra, with a slope significantly less than zero. The figure 
shows a 1/f scaling relation in the lower frequencies (where 
most variation resides, despite appearances due to the 
logarithmic scales), but it is difficult to distinguish long-
range from short-range correlation by visual inspection 
(Wagenmakers, Farrell & Ratcliff, 2004). 

To distinguish between short-range and long-range 
correlation, we applied a maximum likelihood method 
developed by Thornton and Gilden (2005; Torre & 
Wagenmakers, 2009).  
 

 
Figure 5: Averaged spectra for fixation fluctuation series in 

Experiment 1 (dark line is α = 1 reference point). 
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The method differentiates between two qualitatively 
different models of time series data. One is a 1/f scaling 
model, which they expressed in terms of fractional 
Brownian motion plus white noise (fBmW). The other 
model is short-range correlation model, which they express 
as an autoregressive moving-average (ARMA), also with a 
white noise term. Both models are thus specified by two 
parameters, removing potential bias towards a model with 
more free parameters. Given a predefined parameter space, 
the maximum likelihood method chooses the model and pair 
of parameter values most likely to generate fluctuations with 
the spectral characteristics of an observed fluctuation series.  

A spectrum was computed for each of the individual peak 
angle series, and averaged to form equivalent aggregates for 
each condition, each image, and each subject. In all cases, 
fBmW was supported over the ARMA model. The α 
parameter estimates were also compared across conditions, 
images, and subjects. There was no significant effect of 
condition (mean α = 0.60, F(2,327) = 0.48). 

Experiment 1 Discussion 
These results provide broader evidence that heavy-tailed 
distributions and long-range correlations are general 
properties of eye movement trajectories. Previous studies 
found heavy-tailed distributions for restricted sets of 
artificial stimuli, under highly constrained task conditions, 
and also long-range correlations in times to repeatedly 
saccade between pairs of targets (Shelhamer, 2005). 
Experiment 1 expanded upon these results using a wider 
range of natural stimuli, a more natural scene perception 
task, and a novel but simple threshold method for dividing 
series of eye movement speeds into saccade amplitudes and 
fixation fluctuations (above and below threshold). 

The AIC analysis of individual trials shows majority 
support either for lognormal or gamma distributions.  The 
gamma distribution is sometimes characterized as a 
truncated power law, as it is essentially a power law 
distribution that tapers into an exponential distribution.  
Lognormal distributions are also common in situations 
where heavy-tailed behavior is bounded, either in time or 
magnitude.  Given that eye-tracking is sharply bounded by 
the dimensions of the screen, support for lognormal and 
gamma may be convergent support for a truncated power 
law (a task for future research). 

While heavy-tailed distributions and 1/f scaling held 
across images and participants, the task in Experiment 1 was 
homogeneous across trials. The effects of intention on scene 
perception are well-known and were first documented by 
Yarbus (1967), who showed that trajectories over the same 
image were noticeably different depending on viewing 
instructions. Yarbus' work was limited in scope, but more 
recent replications have lent some quantitative support to his 
results (DeAngelus & Pelz, 2009). Thus different intentions 
may result in different distributions and temporal properties. 

Experiment 2 was designed to test this possibility. We 
created two scene perception search tasks with the goal of 
generating highly distinct eye movement trajectories. In a 

“find” task, participants searched for a small star embedded 
in the image. In a “count” task, participants searched for all 
objects of a given kind in order to count them. 

 

 
 
Figure 6: Example visual search trajectory for the find task 

(top) and counting items task (e.g. sheep; bottom). 

Experiment 2 Methods 
Stimuli. Images were selected from the same collection as 
Experiment 1 with the additional criteria that they contain a 
set of 40-100 enumerable objects. Example sets include 
sheep, spots on a giraffe, and leaves floating in a lake. A 
total of 30 such images were selected. A second version of 
each image was created by embedding a small, transparent 
and textured star at a difficult-to-find location in the image. 
A group of volunteers provided feedback to calibrate the 
difficulty of locating stars, and star locations and 
transparencies were adjusted such that stars could be found 
with 60 seconds approximately 50% of the time.  

Subjects, Apparatus, and Task. Sixteen University of 
California Merced undergraduates participated in the 
experiment for course credit. Participants were carefully 
screened for potential issues that might affect sampling rate, 
such as eyeglasses or cosmetics. Each participant was seated 
approximately 36" in front of a 30" flat panel LCD monitor. 
Participants viewed one set of 15 images in random order, 
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and were asked to either find the star, or count the instances 
of a given object. They then performed the other task on the 
other 15 images, also presented in random order. Task and 
set order were counterbalanced, with four participants in 
each of the four possible combinations. Participants were 
given 45 seconds for each image, and in the case of the find 
task, were instructed to fixate and press a key should they 
locate the star before time was up. Monocular gaze position 
was recorded at 500 Hz using an Eye Link II head mounted 
eye tracker.  

 

 
Figure 7: Aggregate saccade amplitude distributions from 

Experiment 2. 

 
Figure 8: Averaged spectra for fixation fluctuation series in 

Experiment 2 (dark line is α = 1 reference point). 

Experiment 2 Results 
The different task conditions had the desired effect of 
evoking clearly distinct spatial patterns of eye fixations. 
Figure 6 shows example trajectories for the find task (upper) 
versus the count task (lower). Based on visual inspection, 
the large majority of find trials were similarly distinct from 
the large majority of count trials. This means that positional 

information of eye movement trajectories is distinct (a topic 
for future research), but eye movement speeds do not carry 
positional information and may thus exhibit the same 
general properties found in Experiment 1.  

Saccade amplitudes and fixation fluctuations were 
constructed as in Experiment 1, and both series exhibited 
the same properties as in Experiment 1. Support for 
lognormally distributed saccade amplitudes was strong at 
both the aggregate and individual trial levels (Figure 7). In 
particular, lognormal was supported for 86% of the find 
trials, 94% of the count trials, 100% of the participant 
aggregates, and 100% of the image aggregates, with the 
remaining trials in both cases showing support for a gamma 
distribution. Estimates of the lognormal shape parameter 
were slightly but reliably lower for the find task trials (mean 
σ  = 1.25) compared with the count task trials (mean σ  = 
1.26, p < 0.001). 

Also as in Experiment 1, spectral analysis was applied to 
each series of fixation ISDs from each trial. Spectra were 
averaged for find trials versus count trials (Figure 8), and 
the Thornton and Gilden (2005) method was used to test for 
long-range correlations (versus short-range or no 
correlations). We found strong evidence for the fBmW 
model in aggregate spectra for each condition, image, and 
subject. In all cases, fBmW was supported over the ARMA 
model. There were no significant differences in the long-
range correlation parameter estimates (α = 0.80) between 
task conditions. 

Experiment 2 Discussion 
The results of Experiment 2 were as unequivocal as 
Experiment 1: the properties of heavy-tailed distributions 
and long-range correlations remained, despite visible 
differences in the spatial layouts of eye movement 
trajectories. Task condition had a small but reliable effect on 
lognormal parameter estimates for saccade amplitude 
distributions, which indicates that task intentions can alter 
series of eye movement speeds, at least by slight quantities. 
There were also differences in lognormal and 1/f parameter 
estimates across experiments that appear to be at least partly 
due to methodological differences. The fact that results were 
otherwise so uniform across experiments provides further 
evidence for their generality.  

Conclusions 
The finding that eye movement speeds during scene 

perception have a common statistical structure may not 
seem very interesting at first, at least not to a cognitive 
scientist. All humans have oculomotor apparatus and control 
systems, so one might expect these similarities to result in 
common statistics of measures like speed that do not carry 
positional information. The present results, however, go 
well beyond typical measures of central tendency and 
variance. Series of eye movement speeds were found to 
contain two different general properties in their saccade 
amplitudes versus fixation fluctuations.  Both of these 
properties are power laws, at least within a given range of 
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scales. And both have been found in other studies of eye 
movements, as well as other studies of neural and 
behavioral activities of many different kinds. Thus heavy-
tailed distributions and long-range correlations appear to be 
common to eye movement trajectories.  

The implications of these results are yet to be explored. 
One might be able to formulate theories of search behaviors 
that provide a common basis for understanding searches 
through habitats, visual fields, information networks (e.g. 
world-wide web), and long-term memory (Hills, 2006). For 
instance, current directions in foraging research include 
complex diffusion and state-space models based on the 
boundary conditions and constraints specific to search 
environments (Patterson et al., 2008).  Similar models may 
prove fruitful in understanding visual search, especially 
based on models of the environment such as saliency maps. 

It is important to note that the above mentioned search 
models are typically aimed at explaining path lengths 
(saccade amplitudes) as opposed to fixation fluctuations. 
With regard to the latter, long-range correlations spanned 
the many dozens of fixations (interspersed by saccades) that 
occur in 45 seconds of scene viewing. This finding is in the 
purview of scene perception models because its time scale 
goes well beyond “low-level” mechanisms like image 
stabilization, at least as they are currently formulated. Thus 
it will be a challenge to formalize models that guide eye 
movements over varied scenes for varied purposes of 
information foraging, while also generating long-range 
correlations in the fluctuations of eye movement speeds. 

With regard to empirical directions, further statistical 
commonalities may be found in the spatial distributions of 
eye fixations that are more typically the focus of scene 
perception models (Henderson, 2003), and appear to be 
more greatly affected by stimulus and task factors. 
Whatever the case, it will be informative to investigate how 
models and theories of scene perception might address the 
present results. 
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