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Transient localist representations in critical branching networks
Jeffrey J. Rodny, Timothy M. Shea and Christopher T. Kello

Cognitive and Information Sciences, University of California, Merced, CA, USA

ABSTRACT
There is a long-standing debate between localist and distributed representations in neural network
research. Different connectionist models have employed one or the other type of representation,
but all such models assume that representations are either always stable, or stable after learning
converges. The present article explores an alternate possibility, which is that representations
continually shift and change, even on relatively fast timescales, and even after learning has
stabilised. This possibility of transient representation is demonstrated in a spiking neural network
model, along with supporting neuroscientific evidence. The model learns localist representations
that change over a wide range of timescales. Representations are made transient because
synaptic connections are continually enabled and disabled to regulate spike propagation to a
homeostasis of critical branching. Experiments and models suggest that so-called grandmother
cells may shift on relatively fast timescales between different mental representations in different
contexts and conditions.
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Introduction

The relationship between neural and mental activity is
central to cognitive science, and it has sparked a
number of long-standing debates. One such debate con-
cerns the number of different percepts, concepts, or
actions that a given neuron might represent. On the
one hand, the activity of a given neuron might contrib-
ute to a single representation at some level, that is, local-
ist representation (Page, 2000). Such hypothetical
neurons are sometimes referred to as grandmother cells
(Bowers, 2009), based on the illustrative example that
the spiking of a given neuron might always contribute
to the thought of one’s grandmother and nothing else.
On the other hand, the activity of a given neuron
might contribute to multiple representations, for
example, distributed representation (Hinton, McClelland,
& Rumelhart, 1986). Localist and distributed represen-
tations highlight one dimension of the relationship
between neural and mental activity, and other dimen-
sions are highlighted by other representations, such as
population codes (Erickson, 2001) and sparse codes
(Olshausen & Field, 1997).

In the present study, we consider the stability over
time of relationships between neuronal spikes and
mental representations (Durstewitz & Deco, 2008). Stab-
ility is somewhat orthogonal to the localist-distributed
debate, but we focus on localist representations
because the issues are clearer in this context, and

because stability has implications for studies of localist
representation. The question is simply this – when one
asserts that spikes from a given neuron relate to a par-
ticular mental representation, over what duration of
time does this relationship extend?

The standard position with respect to this question is
that the activity of a neuron corresponds with the same
mental representation for most or all of its life, that is, a
stable localist representation. In other words, a neuron will
spike in conjunction with the same stimuli or actions if
one records from it early in the day, then later in the
day, then the next day, week, month, or year. The alterna-
tive is that the spikes of a given neuron correspond to
different mental representations over time, with corre-
spondences changing possibly on the order of days,
hours, minutes, or even seconds, that is, a transient local-
ist representation. As with the localist-distributed dimen-
sion, there are intermediate possibilities between the
extremes of stable and transient representations. In par-
ticular, transience must be defined with respect to one or
more timescales, and the longer the timescale, the more
stable the representation.

In this study, we point out that researchers have tacitly
assumed stable representations in the localist-distribu-
ted debate, and that most neural network models
require stability to support learning and performance.
Then we review recent evidence from neuroscience
that calls into question the assumption of stability, and
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we discuss potential advantages of transient represen-
tations for computation and cognitive function. Finally,
we review a spiking neural network model that learns
transient localist representations while maintaining per-
formance in a simple nonlinear classification task. The
model stands as a proof-of-concept that transient rep-
resentations are viable alternatives to stable represen-
tations, and it also leads to different questions and
hypotheses about the relationship between neural and
mental activity.

Stable representations in neural networks

The idea of stable localist representations can be traced
back to early work in neuroscience on sensory and motor
systems. It was natural and straightforward to posit that
individual neurons contribute to individual percepts and
motor commands (i.e. localist representation), and to
also assume that the correspondence between neurons
and percepts or motor commands remains relatively
fixed over a cell’s lifetime. For instance, there is evidence
that neurons in primary visual cortex have well-defined
receptive fields described by a direct correspondence
between a neuron’s firing rate and the presence of, for
example, a luminance contrast of a particular orientation
at a particular location in the visual field (Hubel & Wiesel,
1959, 1968). Likewise, there is evidence that the firing of
individual motor neurons relates to particular motor
activities (Person & Kudina, 1972). In both cases, it is con-
venient to assume that spikes have stable relationships
with sensory and motor activities, because otherwise it
is not clear how these spikes could reliably encode infor-
mation and interact with other neural systems.

The assumption of stable representation was implicit
in the earliest empirical studies of neural coding, and
also in the earliest models of neural network processing.
From Rosenblatt’s perceptron (Rosenblatt, 1961) and
Selfridge’s pandemonium (Selfridge, 1958), to adaptive
resonance (Grossberg, 1976) and interactive activation
(McClelland & Rumelhart, 1981), it has been nearly uni-
versal to formulate units in neural network models with
stable representations. In models without learning,
each unit is assigned to represent a particular feature
or category or concept, such as the letter and word
units in an interactive activation model. These represen-
tations are stable because they do not change during the
“life” of the model. In models with learning, units develop
learned localist or distributed representations over time,
and these representations stabilise once learning has
asymptoted.

For both real and artificial neural networks, the ration-
ale for stable representations is partly grounded in the
assumption of relatively stable network connectivity.

Learning is typically theorised in terms of changes to
the strengths of connections, rather than changes in con-
nectivity (but see constructive learning algorithms as in
Tin-Yau & Dit-Yan, 1997). This stable connectivity
means that units mostly do not change in terms of
their structural relations to other units, which in turn
facilitates stable representations (connections can some-
times weaken to the point of being ineffective, but most
learning algorithms cannot create new connections). To
illustrate, a unit that represents the word “cat” in the
interactive activation model does so by virtue of its
stable connections to letter units “c”, “a”, and “t”. In
cortex, a given neuron in V1 plays a specific role in the
hierarchy of visual features by virtue of its connectivity
with other layers of the visual system.

Stable versus transient representations

The common assumption of stable representations has
proven useful for advancing research on the relationship
between neural and mental activity, but the assumption
is challenged by evidence for transient representations.
To begin with, indirect evidence has been mounting
that neural networks can change structurally more
often, and on faster timescales, than previously
assumed. There are now many known mechanisms of
plasticity that modify synaptic strengths, and combined,
they can make relatively large changes in short periods
of time (Colbran, 2015). Even the connections them-
selves appear to vary frequently over time due to mul-
tiple possible factors. For example, a large proportion
of dendritic spines appear to exhibit ongoing variability
over time, which means that new spines and synaptic
connections are formed, and existing ones are elimi-
nated, on a regular basis (Holtmaat et al., 2005). In
addition to structural changes, synaptic transmission
can be dynamically modulated by neurotransmitter
release at the synapses, causing some synapses to
trigger postsynaptic potentials more reliably than
others (Branco & Staras, 2009). Also, astrocytes seem to
support an additional as yet unknown mechanism of
synaptic plasticity, and evidence suggests they can
rapidly and dynamically modulate neurotransmitter
transmission at synaptic clefts over time (De Pitta et al.,
2012).

The extent and degree of plasticity in effective con-
nectivity calls into question the assumption of stable
relationships between neuronal spikes and mental rep-
resentations. As noted earlier, stable connectivity is
part of the underlying rationale for assuming stable rep-
resentations. Indirect evidence about plasticity is infor-
mative, but we also need direct tests of stable versus
transient representations. Such a test requires a reliable
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recording from the same neuron, under consistent
stimulus and task conditions, for an extended period of
time. Just how much time depends on the degree of
stability/transience one wishes to test, but periods of
hours or even days are warranted, given that most the-
ories and models assume representations are stable for
at least this long. One also needs a way to distinguish
transience in recordings due to representational
change, versus transience due to noise that may arise
from neural processes or from instabilities in recording
conditions (e.g. drift in electrode placement).

The challenges of distinguishing stable versus transi-
ent representations have limited the number of studies
directly testing this distinction, but not surprisingly,
there is evidence at both ends of the spectrum. In one
illustrative study, researchers found single-cell recording
evidence for localist representations in long-term
memory (Quiroga, Reddy, Kreiman, Koch, & Fried,
2005). Quiroga and colleagues examined the firing
rates of neurons in response to various images presented
to epileptic patients with depth electrodes placed in
their medial temporal lobes, which are brain areas with
established relations to long-term memory function.
The researchers identified neurons that fired when par-
ticular people, buildings, or animals were displayed,
across a range of different visual angles and orientations,
but did not fire for other stimulus items. They interpreted
their results as indicative of a sparse code (Quiroga,
Kreiman, Koch, & Fried, 2008), which is a coding
scheme relatively similar to localist representation with
respect to the distributed-localist debate (Quiroga &
Kreiman, 2010).

The Quiroga et al. (2005) study is illustrative because
the authors assumed stable representations, and any
apparent transience was attributed to unwanted
changes in recording conditions, such as electrode slip-
page. Patients were chronically implanted for 7–10 day
periods, and data were collected for about 3–4 recording
sessions, each about 30 minutes long. Responsive cells
were identified in an initial recording session, and then
recorded again in later sessions. However, of 993 initially
identified cells, only 132 exhibited localist-like responses
to the visual stimuli. The article does not contain infor-
mation about whether cells were tracked across sessions,
and if so, how many had consistent response properties
across sessions. It is possible that some of the apparently
non-localist cells were actually localist but not responsive
to the particular stimuli. It is also possible that these cells
were localist but transient during the 30 minute sessions.
For example, a given cell may have been uniquely
responsive to images of Jennifer Aniston during the
first 15 minutes, and Halle Berry during the last
15 minutes. In this case, the criteria used by Quiroga

et al. would exclude such a cell from analysis as a
sparse/localist code.

The assumption of stable representations is common,
but it cannot be taken for granted in work on brain–
machine interfaces. This point has led to studies that
investigate the stability of representations, taking record-
ing conditions into account. The possibility of transient
representations is important for brain–machine inter-
faces because it would complicate the use of machine
learning algorithms to learn the mappings between
neural activity and machine commands. Stability is
simpler because it enables machine learning algorithms
to store fixed mappings between neural recordings
and machine commands. Some studies have been reas-
suring in this regard – Ganguly and Carmena (2009)
found population codes in macaque primary motor
cortex that were fairly stable over multiple week
periods, and Chestek et al. (2007) found evidence for
stable localist representations over two days in
macaque premotor cortex. However, other studies have
found evidence for more transient representations –
Rokni, Richardson, Bizzi, and Seung (2007) found
tuning curves in primary motor cortex to drift over the
course of days and even hours (for similar results see
János et al., 2013), and similar evidence for transience
have been found in studies of sensorimotor maps
(Rossini et al., 1994) and olfactory representations
(Kato, Chu, Isaacson, & Komiyama, 2012). In sum, cur-
rently there is evidence for both stable and transient
representations.

Potential benefits of transient representations

Thus far, we have reviewed logical arguments and
empirical evidence for the existence of transient rep-
resentations, but why would brains evolve such a
relationship between neural and mental activity? On
first pass, it may seem like transience presents difficulties
for information processing. If this is true, then transient
representations should be weeded out by natural selec-
tion, unless they confer some beneficial properties to
offset any disadvantages. Here we review three possible
benefits of transient representations. Then, as a demon-
stration, we report a spiking neural network model that
overcomes the challenges of instability while learning
highly transient, localist representations.

One benefit of transient representations may be to
support the context dependency of perceptual and cogni-
tive function (Freeman, 1994).Wittgenstein (1953) pointed
out that concepts like “game” are defined not by a necess-
ary and sufficient set of features, but rather, by the inter-
action of prior knowledge and context. If neuronal spike
patterns bear some direct relationship to mental
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representations like percepts and concepts, then these
spike patterns are predicted to change in a matter of
seconds or even faster when the context changes, even
when stimuli remain constant. From this perspective, the
relationship between neural and mental activity may be
transient as a function of context. Evidence for such tran-
sience comes from a number of studies, including transi-
ent activity in the moth olfactory lobe whose patterns
change on short timescales depending on perceptual
context (Christensen, Pawlowski, Lei, & Hildebrand,
2000), and analogous findings of hippocampal recordings
that change depending on spatial navigation context
(Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008).

Another potential benefit of transient representations
is their capacity to encode a wider range of percepts,
actions, and concepts compared with stable represen-
tations. Consider the localist case in particular. A well-
known concern about localist encoding is that the size
of the representational space is directly and linearly
related to the number of neurons, that is, we are
limited in the number of representations we can form
by the number of neurons in the cortex. This relationship
is limiting, but the limitation comes from the underlying
assumption of stable localist representation. A localist
neuron with transient relationships to mental activity
has the potential to encode different percepts or con-
cepts at different times. Realising this potential would
increase the total number of mental objects that can
be represented, albeit not all representations could be
evoked simultaneously. Thus the tradeoff would be
that a system of transient localist representations
would not be equipped to activate any possible
percept or concept at any given time. This tradeoff
seems manageable, provided that representations can
be dynamically shifted and reallocated as needed.

The ability of a system to dynamically reconfigure
relationships between neural and mental activity has
been associated with metastability (Bressler & Kelso,
2001; Kello, Anderson, Holden, & Van Orden, 2008),
which is a computationally adaptive property (and thus
potentially beneficial) associated with critical branching
(Haldeman & Beggs, 2005; Kello, 2013). Critical branching
is a principle of homeostatic regulation of spike propa-
gation in a network. Simply put, it states that spikes
should be conserved as they propagate, such that
there number neither grows nor shrinks over time. This
balanced state is theorised to be tenuous, analogous to
walking a tight rope when there is positive feedback to
either side (i.e. increasing propagation begets further
increases, and decreasing propagation begets further
decreases). Metastability derives from interactions
among neurons that tenuously balance their activities
between subcritical and supercritical spike propagation.

This balance can be struck in a spiking neural network
by tuning the propagation of spikes to their critical
branching point, which causes patterns of spike activity
to be perpetually in flux as the system teeters between
subcritical and supercritical regimes – this perpetual
flux in spike patterns is referred to as metastability.

Evidence for critical branching started with a study by
Beggs and Plenz (2003), in which the authors recorded
intrinsic bursts of spike activity in slice preparations of
rat somatosensory cortex. They found spike dynamics
to exhibit bursts of activity whose sizes were distributed
as an inverse power law, P ∼ 1/Sα (similar to exponential
but with a heavy tail). The exponent parameter was esti-
mated from the data to be consistently near 3/2, and this
power law has been referred to as reflecting so-called
neuronal avalanches. Neuronal avalanches are predicted
if spike propagation is effectively a critical branching
process (although there are alternative explanations;
see Touboul & Destexhe, 2010). Critical branching holds
when precisely one spike is propagated for each spike,
on average. The observed 3/2 exponent is predicted by
virtue of critical branching being associated with a
second-order phase transition, and the finding has
been replicated across a wide range of neural systems
and measurements (for a recent review see Roberts,
Boonstra, & Breakspear, 2015).

The associations between neuronal avalanches, criti-
cal branching, and metastability may not be readily
apparent (see Plenz & Thiagarajan, 2007). Explaining
these associations falls outside the present scope, but
we note them here because they underlie the upcoming
model, and because they reveal a third potential benefit
of transient representation. In particular, metastability
may maximise the number of different spike patterns
that networks can generate, which is analogous to the
benefit of greater representational capacity using transi-
ent instead of stable codes. The reason for this potential
benefit stems from the hypothesis that metastability in
neural networks comes from interactions among
neurons balanced between mutual independence and
interdependence (Kello & Van Orden, 2009). This
balance can promote the spontaneous formation of tran-
sient spike patterns, and also increase and even maxi-
mise the number of different patterns that
spontaneously emerge (Tognoli & Kelso, 2014).

A model of transient localist representations

The rationale and evidence for transient representations
has prompted some researchers to build computational
models that simulate transient patterns of activity. For
instance, Haldeman and Beggs (2005) presented a feed-
forward, stochastic model of spike propagation that was
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simple enough to provide a clear demonstration of how
critical branching can maximise pattern formation. The
spiking behaviours of neurons were transient, but the
model did not represent information about inputs or
outputs, and therefore was not representational. Rabino-
vich, Huerta, Varona, and Afraimovich (2008) presented a
mathematical model of transient neural dynamics and
showedhowtransience is compatiblewith stable, repeata-
ble performance. They described how transient dynamics
could be applied to sequential decision-making, which
would be representational, but they did not implement
such a model. Kwok and Smith (2005) implemented tran-
sient representations in a network of threshold gate units
and showed that transience can serve to dynamically
search a problem space to find multiple solutions, rather
than settling on just one. However, the response proper-
ties of individual units were not analysed.

When taken together, the modelling studies just
reviewed begin to demonstrate how it is possible to simu-
late transient dynamics in neural network models, and use
transient dynamics for information processing. However,
none of these models simulated spike dynamics or transi-
ent localist representations. Also they did not directly
demonstrate how neuronal units can change represen-
tations on fast timescales while learning and maintaining
performance.Herewepresentnewanalyses of a previously
published model (Rodny & Kello, 2014) that converges
through learning on stable performance in a simple classi-
fication task, yet ongoing regulation of network connec-
tivity is shown to produce continual, sometimes abrupt
changes to localist representations. These changes are
driven by a simple mechanism that adjusts connectivity
to balance spike propagation towards its critical branching
point (Kello, 2013). As a result, a unit may represent one
learned category for an extended period of time, and
then switch abruptly to represent another learned cat-
egory, or switch to become uncorrelated with learned cat-
egories. But despite this transience in representation,
performance is maintained over output units.

In the next section, we review the model in detail for
the interested reader, and further details can be found in
the original paper (Rodny & Kello, 2014). We then
conduct new analyses on model performance to show
directly how the spiking of some units exhibited transi-
ent localist representations of output targets. We end
with implications for future investigations of stable
versus transient representations in neural networks.

Review of critical branching network with
learning

Rodny and Kello (2014) presented a spiking reservoir
network (Lukoševičius & Jaeger, 2009) with three

groups of units: A group of excitatory source units, a
group of excitatory and inhibitory reservoir units, and a
group of sink units. Source units were activated by exter-
nal inputs, and their spikes propagated into the reservoir.
Reservoir spikes either propagated within reservoir via
recurrent synapses, or they exited the reservoir by trig-
gering spikes on sink units. Sink units did not have out-
going connections so their spikes did not propagate
further. Units were standard leaky integrate-and-fire,
and connectivity was sparse and random, with random
axonal transmission delays. Importantly, the synaptic
strength of each connection could take on only one of
two values (see Branco & Staras, 2009): disabled (zero)
or enabled (a strong + or – value for excitatory or inhibi-
tory units, respectively). Synaptic strengths were
switched between two values to create the possibility
of relatively rapid changes in connectivity (i.e. with just
a small number of switches) that cause transience in rep-
resentation, as reported later.

The synaptic switching algorithm was designed to
enable excitatory synapses when the local branching
ratio was subcritical (i.e. <1), and disable excitatory
synapses when local estimates were supercritical (>1).
Enabling and disabling synapses increased and
decreased spike propagation to regulate around the criti-
cal branching point. Kello (2013) showed that the algor-
ithm can bring a spiking network to its critical branching
point, and also produce neuronal avalanches as pre-
dicted. However, that study focused on the intrinsic
dynamics of critical branching networks, which means
that spikes were not associated with stimuli or responses.
Such associations are necessary to investigate transient
localist representations.

Rodny and Kello (2014) extended the critical branch-
ing algorithm to incorporate a simple learning mechan-
ism, and thereby make spikes “representational” in the
sense that each one has a corresponding effect on
learned responses to stimuli. In the model, spikes pro-
duced by sink units received rewards or punishments,
and a trace was added to each synapse that kept track
of correlations between signals transmitted across the
synapse, and associated rewards or punishments. Synap-
tic trace values were used to guide the enabling and dis-
abling of synapses. In particular, when the critical
branching algorithm signalled a synaptic modification,
synapses with high reward correlations were selectively
enabled, and synapses with low reward correlations (or
high punishment correlations) were selectively disabled.
These traces effectively “corralled” transient spike
dynamics to generate patterns that increase the prob-
ability of generating spikes correlated with rewards.

The nonlinear classification task used by Rodny and
Kello (2014) was the exclusive-or (XOR) function, which
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is a standard assay of nonlinear classification perform-
ance in reservoir computing. In particular, each output
spike represented XOR = 0 or XOR = 1, and spikes repre-
senting each value were counted during each response
period. On each trial the network responded with the
value that elicited the greater number of spikes. The
sink units that carried output spikes had stable represen-
tations because their values were assigned during
network initialisation, and these assignments remained
fixed for the duration of a simulation. However, reservoir
units were not assigned values, so their representations
were free to be transient.

The critical branching mechanism continually enabled
and disabled recurrent synapses in the reservoir as well
as output synapses projecting onto sink units. These
synaptic modifications continued even after reward
probabilities reached their asymptotic values, because
critical branching was never perfectly nor permanently
achieved. This inability to achieve perfect critical branch-
ing made reservoir spike dynamics transient, because
connectivity never became fixed. The effect of dynamic
connectivity on spike propagation and performance
can be seen in Figure 1, which shows that even after per-
formance reached asymptote at 0.91 mean proportion
correct, the model continued to exhibit large fluctuations
due to ongoing changes in connectivity.

Continually changing connectivity also resulted in
metastable spike patterns. To examine metastability,
Rodny and Kello (2014) analysed reservoir spike
dynamics as time series of spike patterns, where each
pattern was a vector of unit spike counts over a given
window of time (also see Sasaki, Matsuki, & Ikegaya,
2007). Pattern overlap was computed using correlation,
and an example autocorrelation matrix is shown in the
upper left graph of Figure 2. One can see local corre-
lations among spike patterns nearby in time along the
diagonal, contrasted with a relative lack of correlation
at longer time lags away from the diagonal. This lack of
correlation indicates that spike patterns were constantly
shifting over time, which can also be visualised by com-
puting the first two principal components of the spike
pattern time series. The resulting pattern trajectory in
PCA coordinates is plotted in the upper right panel of
Figure 2. The transience of pattern dynamics can be
seen as a wandering path through PCA space. For the
sake of comparison, the same analyses were conducted
while the critical branching mechanism was disengaged
(after reaching asymptote), thereby freezing connec-
tivity. The bottom two panels show that spike patterns
were highly correlated over time while connectivity
was frozen, and pattern dynamics moved randomly
within a small region of PCA space.

Analyses of transient localist representations

Results reviewed thus far show that a simple mechanism
of critical branching can lead to transient spike patterns
in terms of metastability. Next, in order to examine the
transience of representation in Rodny and Kello’s
(2014) critical branching network, we need to measure
the relationship between reservoir spikes and their
effects on output spikes generated by sink units. Specifi-
cally, for each reservoir spike, we measured whether its
signal arrived at the sink while XOR = 0 was the correct
output, or XOR = 1 was the correct output. By this
measure, a purely stable, localist representation would
correspond to a reservoir unit that spiked only when
XOR = 0 or XOR = 1 was correct. A transient localist rep-
resentation would exhibit runs of XOR = 0 interleaved
with XOR = 1. To be distinguished from a unit whose
runs occur by chance, run lengths would need to be
greater than expected by chance.

We first tested for stable localist representations by
examining the long-term biases of reservoir units to
spike more when XOR = 0 or XOR = 1. Figure 3 shows
two bias distributions using two different measures
of bias, plus a third distribution of spike counts per
unit that serves as a reference. One bias distribution
is the number of spikes produced by each reservoir
unit while XOR = 1, minus the number of spikes it pro-
duced while XOR = 0. The other is the distribution of
proportion of spikes produced by each reservoir unit
while XOR = 1, divided by total number of spikes it
produced. The bimodality of these two bias distri-
butions is clear evidence that a greater-than-chance
number of reservoir units exhibited at least somewhat
stable localist representations, in that they exhibited
long-term biases towards spiking selectively when
XOR = 0 or XOR = 1. The histograms also show an
asymmetric bias towards XOR = 1, which means that
idiosyncratic factors (e.g. due to initialisation and asyn-
chronous updating) were amplified over the course of
learning.

While some reservoir units exhibited somewhat stable
localist representations, the histograms show that many
units exhibit little or no bias, leaving open the possibility
that the model also learned transient localist represen-
tations. For instance, only 28% of reservoir units had a
localist bias, as defined by greater than 0.8 probability
of spiking when XOR = 0 or XOR = 1, exclusively.
However, less than 2% of the neurons had a strong loc-
alist bias, as defined by a greater than 0.98 probability
of spiking when XOR = 0 or XOR = 1, exclusively. Nearly
40% of the units had no strong bias either way, with
their spikes roughly evenly divided between the two
XOR outputs (proportions between 0.4 and 0.6). Thus
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we found that very few units converged on localist rep-
resentations stable over the whole course of asymptotic
performance. However, neuroscience experiments
record for limited periods of time, so we need to
analyse representations on shorter timescales in order
to test for relatively stable versus transient represen-
tation. For the latter, we need to look for switches
between runs of XOR = 0 and XOR = 1 biases in the
time series of reservoir spike trains.

We start by showing in Figure 4 some example spike
trains that represent the different types of runs observed

in reservoir units. In particular, we searched through
reservoir activity to find spike trains that exemplify
both stable and transient localist representation, as
well as spike trains that exhibit no clear relationship
with output values. Figure 4 shows raster plots for
spike trains exhibiting (1) stable localist representations
corresponding to XOR = 0 or XOR = 1; (2) transient local-
ist representations that switch between longer-than-
typical runs of XOR = 0 and XOR = 1; and (3) no consist-
ent representation with respect to output values. These
spike trains illustrate the diversity of reservoir unit
activity in the network. They show that reservoir rep-
resentations can be unstable while learned classification
performance is stable.

The examples of localist transient representation
shown in Figure 4 are highly unlikely to occur by
chance. We further investigate this point by analysing
the distribution of observed run lengths as a measure
of transience in localist representation. To ensure
spike trains of sufficient length for distributional analy-
sis, we selected all reservoir units that spiked at least
5000 times after learning stabilised. For each unit, we
counted the number of runs of consecutive spikes cor-
responding to XOR = 0 or XOR = 1, for each run length
N. For instance, if a given reservoir unit produce 5 con-
secutive spikes while XOR = 1 before a 6th spike while
XOR = 0, we marked one run of length 5. There are
numerous possible distributions, but the evidence for
metastability due to critical branching leads to a pre-
diction. Specifically, metastable dynamics are associ-
ated with power law distributions in the durations of
spike patterns, and a simple proxy for spike pattern
durations is the lengths of transient localist runs as
just defined. A power law distribution in this case

Figure 1. Time series of mean branching ratio estimates, mean reservoir spike rate, and mean proportion of correct responses over
time. The X axis is simulation time and data points were averaged every 100 simulation time steps.

Figure 2. Autocorrelation (left) and PCA (right) analyses of spike
pattern time series for the reservoir spiking network while spike
propagation was regulated to be critical branching (top), and
while regulation was disengaged and connectivity was frozen
(bottom). For the autocorrelation plots, red and yellow indicate
stronger correlations, light and dark blue indicates little to no
correlation.
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would mean that longer runs occur more often than
expected by chance. That is, the tail of the observed
distribution should be heavier than an exponential
(Poisson) distribution.

Figure 5 plots the distribution of localist run lengths
for 10 example reservoir units chosen at random, and
also for the aggregate distribution. The distributions
are plotted on a log-log scale because power laws
appear as linear relations in these coordinates. One can
see that run lengths were approximately distributed as
a power law because the distribution is roughly linear
in logarithmic coordinates (the exponent was approxi-
mately two as measured by a regression line fit). This
power law relationship means that localist runs occurred
more often than expected by chance. Therefore learning

and regulation in the critical branching network resulted
in transient localist representations for reservoir units.

Another way to investigate transience in localist rep-
resentation is to simulate the placement of an electrode
tapping a random neuron at a random time point, and
quantify the probability of finding a localist represen-
tation that is stable for a given number of spikes.
Figure 6 plots the probability of finding a consistent
run of spikes corresponding to XOR = 0 or XOR = 1 for
runs at least 10–1000 spikes in length. Results show
that stable representations are relatively rare. For
instance, there is only about a 10% chance of finding a
neuron with a consistent relationship to the target
output for 200 or more consecutive spikes. This prob-
ability of finding a stable localist representation is

Figure 3. Three histograms based on reservoir spikes produced after learning stabilised. Left: number of spikes per unit over an entire
simulation (excluding initial transient) Middle: Per unit difference between the number of spikes corresponding to XOR = 1 minus XOR
= 0. Right: Per unit proportion of spikes corresponding to XOR = 1 divided by total number of spikes.

Figure 4. Raster plot of spike trains representing different relationships between reservoir activity and XOR outputs after learning
stabilised. Each row contains a sequence of 50 spikes from an example reservoir unit in a period of 600 time units. Spikes are coloured
blue or red when they occurred while XOR = 0 or 1, respectively. The top two groups of units show spike trains stably representing XOR
= 0 or XOR = 1. The transient group shows spike trains switching between the two different output representations, and the inconsist-
ent group shows spike trains with no consistent relationship to output values.
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comparable to neuroscientific findings, albeit it is impor-
tant to note that recording conditions are perfectly con-
stant in the simulation, whereas real recording
conditions are noisy.

Discussion

The debate between distributed and localist represen-
tations has been ongoing for many years, and both
sides have their strengths and weaknesses. In the
present study, we aimed to inform this debate by high-
lighting an often overlooked aspect of the relationship

between neural and mental activity. We presented
logical arguments, empirical evidence, and a neural
network model that together lead to the proposition of
transient localist representations. These representations
are localist in that the spikes of a given neuron are
hypothesised to correspond with individual percepts,
concepts, or actions on relatively short timescales (e.g.
hours, days, even minutes and seconds). But over a suffi-
ciently long period of time, model neurons were shown
to shift among different representations. Transience was
localist, but representations shared at least one feature
with distributed representation – a given neuron can
play a role in multiple representations, with the differ-
ence being that a transient localist neuron can only rep-
resent a single percept, concept, or action at any one
time.

The critical branching network demonstrated how
transient localist representations can emerge when
network connectivity is continually changing due to
homeostatic and learning plasticity. The model is primar-
ily a proof-of-concept in this regard, and further work is
needed to relate it directly to neuroscience data. For
instance, the stimulation timescale is arbitrary, so the
model makes no claims about the timescale of transience
in real neural systems. Also the model is a generic, ran-
domly connected recurrent network, so it makes no
claims about which types of neurons or which brain
areas are more likely to exhibit transient representations.

Caveats aside, the model suggest one factor that may
contribute to observations of apparently arbitrary
relationships between spikes on the one hand, and
stimuli, tasks or motor commands on the other. Such
neurons may actually be switching their representations
among different percepts, concepts, or actions, which
might appear arbitrary without examining their time
series. We demonstrated that one way to distinguish
transient representations from noise is to analyse the dis-
tribution of run lengths of localist representation. Ana-
lyses like these should be feasible, at least in some
single-cell recording studies, and pursued to further
test the hypothesis of transient localist representation.

Another future direction is to further investigate the
adaptive features of transience for neural and cognitive
systems. The increase in representational space over
time is an implicit benefit, but a predicted explicit
benefit is the responsiveness of representations to
adapt to context and changing conditions. We did not
test for this benefit in the critical branching model, and
we may not be able to without further developing the
relationship between synaptic changes driven by
homeostasis versus rewards and punishments or input
statistics. It would also be helpful to investigate tasks in
which contexts and conditions change on the fly, to

Figure 5. Distribution of localist run lengths for ten randomly
selected reservoir units with at least 5000 spikes (thin lines), over-
laid by the run length distribution for all reservoir units with at
least 5000 spikes (thick blue line).

Figure 6. Probability of finding a neuron that exhibits a run of N
spikes at least L long that consistently corresponded to either
XOR = 0 or XOR = 1.
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see whether transient representations serve to help
process perceptual inputs, hold information in memory,
or make associations, predictions, and inferences.

The critical branching model may prove useful
towards investigating the adaptive benefits of transient
representation, localist or otherwise, but there are a
number of differences between the model and real
neural systems that must be considered. One basic differ-
ence is that there were only two categories of output in
our model (XOR = 0 versus XOR = 1). Real neural systems
deal with many more distinctions among many more
categories, and much more variability within categories,
especially when it comes to human language and con-
ceptual knowledge. It would be interesting and impor-
tant to investigate transient representations in models
that learn more categories, and more variations within
them. It may turn out that the prevalence of transient loc-
alist representations depends on factors like the number
of categories being learned.

Another basic difference is that the mechanisms and
dynamics of units and synapses were greatly simplified
in our model compared with real neural systems. Of
course all neural network models are greatly simplified,
but one must ask whether any of our simplifications
played a critical role in our findings of transient localist
representations. As already noted, the critical branching
mechanism was responsible for metastability, and
hence also responsible for the appearance of transient
localist representations. Kello (2013) argued that the
mechanism and its enabling/disabling of synapses is at
least consistent with current neuroscientific data, and its
effects explain a number of different power laws observed
in neural activity. Therefore themechanism and its effects
appear to provide some insight intometastable dynamics
in real spiking neurons, but it is likely that further research
is necessary to better capture the relevant principles of
homeostatic regulation and plasticity.

Another question raised earlier is whether transient
representations are compatible with long-term, stable
learning. The critical branching model demonstrates
that transient localist representations are compatible
with stable classification learning over an extended
period of simulation time, and we can be confident
that learning would continue to be stable as long as
simulation conditions remained the same. However, in
the present study we focused on the condition in
which rewards and punishments are administered
throughout the simulations. Under more realistic con-
ditions, rewards and punishments may not be available
for extended periods of time, and nonetheless neural
systems continue to function based on past learning.
Rodny and Kello (2014) reported a condition in which
rewards and punishments were completely removed

after asymptotic learning. They found that classification
performance continued to be high and stable, even
though critical branching continued to enable and
disable synapses with rewards or punishments. The
reason for maintained performance in the absence of
rewards and punishments is that synaptic traces
remained fixed and stable, and thus continued to
guide the enabling and disabling of synapses.

Finally, it should be noted that the classic stability/plas-
ticity dilemma (Grossberg, 1980) is a potential issue for our
model, as it is for other neural network models. If the
model is trained on one task, and then the task changes
along with rewards and punishments, the first task may
be unlearned. This phenomenon is known as “cata-
strophic interference” (Lewandowsky & Li, 1995), and it
is a long-standing issue in neural network research with
many hypotheses on how it can be addressed and miti-
gated. In a critical branching network, catastrophic inter-
ference may not be a problem if spike activity is sparse
enough and tasks elicit distinct enough reservoir spike
patterns to minimise overlap. It is also possible that reser-
voir dynamics can be generic enough to support projec-
tions to multiple output layers representing multiple
tasks, as is the premise of reservoir computing. Or, the
critical branching mechanism could be modified to
avoid changes to synapses as they becomemore consist-
ently enabled or disabled, as proposed by Kello (2013).
Further work is needed to test all these possibilities.

To conclude, our critical branching model does not
provide evidence for or against localist or distributed
representations, nor was it intended to. Instead the
model highlights the possibility that evidence for “grand-
mother cells” and other types of localist representations
may belie neural systems in which representations are
more transient than often assumed. Grandmother cells
may emerge under a variety of contexts and conditions,
but they may also change into grandfather cells some-
times, or redwood cells or who-knows-what cells, and
they might even transition from sparse to dense to dis-
tributed to localist representations, and back again.
Together, the evidence, theories, and models covered
herein suggest a need for further investigation into the
transience of neural representations and their potentially
beneficial properties.
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