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Abstract

Two connectionist models are reported that simulated the defining features of the double dissociation between pho-

nological and surface dyslexia in word reading. One model was a feed-forward, three-layer perceptron, and the other

included recurrent connections. Neither model contained an architectural separation of sublexical and lexical processes,

nor of phonological and semantic processes. Analyses showed that the double dissociation was simulated because the

control parameter input gain shifted the models between conjunctive and componential modes of processing. The dis-

sociation was not simulated by any kind of damage to separate system components. The simulations are discussed in the

context of current accounts of surface and phonological dyslexia.
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1. Introduction

In most current models of word reading, two

routes of processing are proposed to compute the

sound of a word given its printed form (Coltheart,
Curtis, Atkins, & Haller, 1993; Coltheart, Rastle,

Perry, Langdon, & Ziegler, 2001; Harm & Seiden-

berg, 1999; Plaut, McClelland, Seidenberg, & Pat-

terson, 1996). One route is sublexical in that it
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extracts andutilizes regularities in themapping from

components of orthography (e.g., letters) to compo-

nents of phonology (e.g., phonemes). For instance,

the letter P typically corresponds to the sound /p/,

as in PIT. The other route is lexical in that it uses
either localist or semantic representations of words.

Localist and semantic representations are both con-

sidered lexical in this context because they bear little

or no systematic relationship to the fine-grained

components of orthography and phonology. For in-

stance, the letter P and sound /p/ bear no systematic

relationship to the meanings of the word PIT.
ed.
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The evidence for sublexical and lexical routes of

processing in word naming has come from a num-

ber of sources (for a review, see Plaut et al. (1996)),

but here, we focus on evidence from selective read-
ing impairments that occur as a result of brain

damage. One class of impairment termed phono-

logical dyslexia is characterized by poor reading

aloud of nonwords (e.g., SHONG), with relatively

intact word reading (Behrmann & Bub, 1992).

Conversely, surface dyslexia is characterized by

poor reading aloud of words with irregular spell-

ing-sound correspondences, with relatively intact
nonword reading (Funnell, 1983). For instance,

the vowel correspondence in PINT is irregular be-

cause the letter I, as well as the body INT, typically

correspond to a short vowel, rather than the long

vowel in PINT.

The complementary impairments of phonologi-

cal and surface dyslexia have a straightforward

explanation in terms of separate sublexical and
lexical routes of processing. The impairment in

nonword reading that characterizes phonological

dyslexia arises from damage to the sublexical

route. This is because performance on nonword

stimuli presumably relies on the componential reg-

ularities between spelling and sound (e.g., the

sounds corresponding to SH, O, and NG can be

pieced together to form a plausible nonword pro-
nunciation). By contrast, the impairment in irregu-

lar word reading that characterizes surface

dyslexia arises from damage to the lexical route.

This is because performance on irregular word

stimuli presumably relies on word-specific knowl-

edge (e.g., one must know the word PINT in order

to pronounce it correctly).

There are a number of reasons why sublexical
and lexical routes have been proposed to account

for surface and phonological dyslexia, but perhaps

the most important one is the basic logic of double

dissociations. If two components of a cognitive sys-

tem operate independently, then they will make

independent contributions to the behavior of that

system. Thus, a change in one component will have

no effect on the behavioral contributions of the
other. Such complementary effects on behavior

constitute a double dissociation, and they are often

interpreted as strong evidence that independent sys-

tem components underlie the dissociated behaviors.
Surface and phonological dyslexia constitute a

double dissociation, and many researchers have

interpreted this double dissociation as evidence

for sublexical and lexical routes. Some researchers
have alternatively proposed that semantic and

phonological components may underlie this disso-

ciation (Patterson & Ralph, 1999), but this alterna-

tive also assumes that two system components

underlie the dissociation, as in the dual-route

hypothesis.

Despite appearances, even the purest cases of

phonological and surface dyslexia do not necessi-
tate the existence of two processing routes or two

system components of any kind (Plaut, 1995;

Van Orden, Pennington, & Stone, 2001). A sin-

gle-component explanation is always a logical pos-

sibility, but without a specific single-component

account, it is just a logical possibility. Until such

accounts are proposed, observed dissociations will

continue to be interpreted as evidence for the exist-
ence of two system components in word reading.

Recently, Kello and Plaut (2003) reported on a

model of word reading that offers a true single-com-

ponent explanation of the double dissociation be-

tween phonological and surface dyslexia. The

model was inspired by the basic question of how

reading acquisition builds upon the prior learning

that occurs during spoken language acquisition
(also see Plaut & Kello (1999)). The acquisition of

spoken language requires the mapping from sound

tomeaning (comprehension) andmeaning to sound

(production). In the context of a connectionist ap-

proach to lexical processing, a single, distributed le-

vel of representation can be learned to mediate the

bi-directional mapping between the phonological

and semantic attributes of words. The question on
this approach is, how do printed word forms make

contact with the bi-directional mapping learned

during spoken language acquisition?

The answer offered by Kello and Plaut (2003) is

that orthography maps into the level of representa-

tion that mediates semantics and phonology (see

Fig. 1, inset), rather than mapping into semantics

and phonology themselves. This architecture effec-
tively ‘‘kills two birds with one stone’’: the mediat-

ing representations provide access to both the

semantic and phonological forms, so only one

route is necessary. While there is a logical appeal



Fig. 1. Results from the single-route model of word reading reported by Kello (2003).
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to this single-route architecture, it is unclear how it

could account for the dissociation between surface

and phonological dyslexia because there is no

architectural separation of sublexical and lexical

processes.
In a subsequent analysis of this single-route

model, Kello (2003) showed that an impairment

in the processing of nonwords could, in fact, be

dissociated from an impairment in the processing

of irregular words. The method used to simulate

this dissociation was to shift the model between

sublexical and lexical ‘‘modes’’ of processing by

means of a control parameter termed input gain

(see Section 2.2). The simulation results showing

the dissociation are graphed in Fig. 1. The use of

input gain was inspired by simulations of other

behavioral data (see Kello & Plaut (2003)), but

the function of input gain such that it caused this

dissociation was not elucidated.
2. Current simulations

The goal of the current work was to use com-

putational analyses to determine how input gain

had its dissociating effect in the simulation of

word reading reported by Kello (2003). To facil-
itate these analyses, the essential principles and

mechanisms of the single-route model of word

reading were distilled into two very simple con-

nectionist models: one model was a feed-for-

ward, 3-layer perceptron, and the other
included recurrent connections from the output

layer back to the hidden layer. These models

did not simulate word reading or dyslexia,

although their results are compared with data

from experiments with phonological and surface

dyslexics. Rather, the main purpose of the mod-

els was to replicate the dissociating effect of in-

put gain in a more controlled and analytically
tractable context. This tractability enabled us to

determine that input gain can shift a connection-

ist model between componential and conjunctive

modes of processing, and that it is this func-

tion of input gain that was responsible for the

simulation of phonological and surface dyslexia

reported by Kello (2003).

2.1. Input and output representations

Input and output representations were con-

structed from a 12 dimensional binary space. Out

of 212 = 4096 possible input patterns, one fourth

(1024) were chosen at random to constitute the



64 D.E. Sibley, C.T. Kello / Cognitive Systems Research 6 (2005) 61–69
corpus of known items. Each chosen input pattern

was associated with one output pattern. Output

patterns were created in three steps. First, each in-

put pattern was copied to its corresponding output
pattern (i.e., the identity mapping). Second, fre-

quencies were assigned to each item according to

Zipf�s law, f = r�0.5, where r was an arbitrarily as-

signed rank from 1 to 1024. Third, the bit value of

each dimension, for each output pattern, was

flipped with a probability governed by Zipf�s law,
p = 0.82r�0.5. The result of this formula was that

the more frequent items were more likely to be
irregular, and more likely to be more irregular

(i.e., have more flipped values), compared with

the less frequent items. This formula characterizes

the relationship between frequency and regularity

that exists in the English language, as well as other

languages. The multiplicative constant of 0.82 was

set such that there was a 5% probability on aver-

age of flipping each target value across the set of
known items. There were 580 fully regular items

(no flipped bits), and 444 irregular items with at

least one flipped bits per item. The 3072 remaining

patterns served to test the generalization of learn-

ing to novel items.

Each of the 12 input dimensions were coded by

two input units, one coding on-bits as 1 and off-

bits as 0, the other coding the opposite. This
xj1 � x coding scheme was used because the mod-

els were trained via backpropagation. In back-

propagation, no learning will occur on a unit�s
sending weights when the activation value of that

unit is zero. Therefore, the xj1 � x coding scheme

ensured that weight derivatives were generated for

every input dimension, on every training episode.

The xj1 � x coding was not necessary for the out-
put units, so there were only 12 output units, each

one corresponding directly to one of the 12 output

dimensions.

The input and output representations cap-

tured the essential properties of quasi-regularity

as it is implemented in most connectionist mod-

els of word reading. Specifically, each input unit

had a systematic relationship with one output
unit, much like the way that each orthographic

unit would have a systematic relationship with

at least one phonological unit (e.g., a unit for

the letter P in the initial position would have a
systematic relationship with a unit for the

phoneme /p/ in the first position). Moreover,

these relationships were never entirely systematic,

much like real quasi-regularity in spelling-sound
correspondences.

2.2. Model architecture

In both the feed-forward model and the recur-

rent model, the input units were fully connected

to 200 hidden units, and the hidden units were

fully connected to the output units. In the recur-

rent model, the output layer was also fully con-

nected back to the hidden layer. The number of

hidden units was determined through pilot testing

to be about 50 units more than the minimum
needed to learn the mapping. However, results

were very similar over a range of hidden unit num-

bers. Unit activations were calculated with the

hyperbolic tangent function,

a½t�j ¼ tanh c I ½t�1�
j þ Dt I ½t�j � I ½t�1�

j

� �� �h i
; ð1Þ

where c was input gain, Dt was an integration

constant fixed at 0.166, and I ½t�j was the net input

at time t. For the feed-forward network, there
was no time course of processing, so there was

no integration constant, and activations were

simply a function of the instantaneous net input.

Input gain was fixed at 1 during training, and

varied during testing (see following section).

The net input to each unit was calculated as

the dot product between the activation vector

over its sending units, and the weight vector over
its incoming connections. The hyperbolic tangent

is a sigmoidal function with asymptotes at +1

and �1.

Forward connection weights were initialized to

random values in the range ±0.1, and recurrent

weights (for the recurrent model) were initialized

in the range ±0.5. A larger range was used for

recurrent weights to ensure that they had a sub-
stantial impact on processing. Weights were

learned by gradient descent,

Dwij ¼ g oE=owij

� �
; ð2Þ

where wij was the connection weight from unit j

to i, g was the learning rate (fixed at 0.001), and
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Fig. 2. Percent correct performance of the feed-forward model

as a function of input gain and item type.
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E was cross-entropy error (Rumelhart, Durbin,

Golden, & Chauvin, 1995), which was scaled

by each item�s frequency. Weight changes were

made after each time weight derivatives had been

accumulated over all 1024 items in the corpus.
Weight derivatives were calculated for each item

as follows: input units were set to a given item�s
input pattern, activations were propagated for-

ward through the network, and an error signal

was calculated from the difference between actual

and target outputs. In the feed-forward model

the error signal was then backpropagated to gen-

erate the weight derivatives. In the recurrent
model, activations were propagated forward for

18 ticks, error was injected on the last 12 ticks,

and then error was backpropagated in time.

Weight updates were repeated until every out-

put unit was within 0.1 of its target for every item

in the training corpus. This criterion was reached

in the feed-forward model after 62,000 passes

through the corpus, and in the recurrent model
after 56,000 passes.
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Fig. 3. Percent correct performance of the recurrent model as a

function of input gain and item type.
2.3. Testing procedure

The models were tested by setting the input

units to a given input pattern, and recording the

output activations. In the recurrent network, acti-

vations were recorded on the first tick for which
all 12 output nodes were within 0.1 of an asymp-

tote. If a node did not reach this criterion after 18

ticks, the output was judged as incorrect. The cri-

terion for correct performance was having the

activations of all 12 output units on the target

side of zero. Targets for items in the corpus were

set according to each item�s output pattern. Tar-

gets for the 3072 novel items were set according
to each item�s input pattern, i.e., the identity

mapping.

To dissociate item-based and regularity-based

processing, input gain was varied as a single con-

trol parameter over the hidden units. The reported

levels of input gain were between 0.33 and 3. This

range was chosen to show asymptotic performance

at the lower and upper ends, i.e., the patterns of
behavior did not change substantially beyond this

range.
3. Simulation results

To simplify the presentation of results, known

items were divided into categories of high fre-

quency and low frequency. The high frequency

category consisted of the 256 most frequent

trained items (top quartile), and the low frequency

category consisted of the 256 least frequent trained
items (bottom quartile). Mean accuracies for the

feed-forward model are graphed in Fig. 2 as a

function of input gain and item type (high and

low frequency regular, high and low frequency

irregular, and novel). The same are graphed for

the recurrent model in Fig. 3.



66 D.E. Sibley, C.T. Kello / Cognitive Systems Research 6 (2005) 61–69
Figs. 2 and 3 show that both models exhibited a

clear dissociation in performance on irregular

items compared with novel items. At low levels

of input gain, generalization of the identity map-
ping to novel inputs was essentially perfect, as

was performance on regular items. By contrast,

performance on irregular items dropped to 0%,

at which point all inputs were computed as the

identity mapping. For irregular items, application

of the identity mapping can be considered as a reg-

ularization error because, for the quasi-regular do-

main constructed here, the identity mapping is the
regular mapping.

At high levels of input gain, performance on

known items was better than performance on

novel items. At their maximum difference, mean

accuracies in the feed-forward model were 97%

for known items, and 46% for novel items. The

same comparison in the recurrent model was

94% and 35%, respectively. The biggest difference
between the models was that performance on

known items was near ceiling at all high levels of

input gain in the feed-forward model, whereas per-

formance on known items dropped off at suffi-

ciently high levels of input gain in the recurrent

model. This difference is explained by the fact that

high levels of input gain amplify the effect of non-

linearities in the activation function on processing
(see below). Recurrence caused this amplification

to increase to the point of distorting the course

of processing. Given that the dissociation was

maintained despite this distorting effect, we did

not see it as informative with respect to the disso-

ciating effect of input gain.

The models� behavior was reminiscent of the

double dissociation seen in surface and phonolog-
ical dyslexia. Table 1 compares the word naming

performance of two surface dyslexic patients
Table 1

Surface dyslexic MP and KT, compared with feed-forward (FF) and re

high frequency (HF), low frequency (LF), regular (Reg), irregular (Ir

MP (%) FF (%) Re (%

HF Reg 95 100 100

LF Reg 98 100 100

HF Irr 93 89 86

LF Irr 73 58 74

Novel 96 82 65
(MP, Behrmann & Bub, 1992; KT, McCarthy &

Warrington, 1986) with each model�s performance

at low levels of input gain. Input gain was manip-

ulated as a free parameter in each model to best
match each patient�s pattern of performance. Sim-

ilarly, a phonological dyslexic patient (WB, Funn-

ell, 1983) can be compared with both types of

models processing at increased levels of input gain.

Of known words, the patient WB performed 89%

correctly, while the feed-forward and recurrent

models correctly performed 93% and 44%, respec-

tively. With novel words, the patient WB per-
formed 0% correctly, while the feed-forward and

recurrent models correctly performed 42% and

19%, respectively. The purpose of these compari-

sons was only to draw a relation between the cur-

rent models and dyslexia; as stated earlier, the

models were not intended to simulate dyslexia.

The results reported here show that the manip-

ulation of input gain as a single control parameter,
over a single level of representation, caused a dou-

ble dissociation in both models. Thus, we can con-

clude that the dynamics produced by recurrent

connectivity is not required to give input gain its

dissociating effect. While this result is informative,

it does not fully elucidate the computational prin-

ciples by which input gain has its dissociating

effect. The following analyses were designed to
explicitly show that input gain affects the extent

to which processing is componential versus con-

junctive, and that it is this property of input gain

that is responsible for its dissociating effect.

3.1. Componential versus conjunctive processing

In the context of the current models, compo-
nential processing occurs when each input dimen-

sion is used independently of all other input
current (Re) models at various decreased levels of input gain, on

r), and novel items

) KT (%) FF (%) Re (%)

100 100 100

89 100 99

47 57 25

26 19 24

100 86 82
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dimension in computing an output pattern. That

is, each input dimension is treated as an independ-

ent component of the input pattern. By contrast,

conjunctive processing occurs when conjunctions
of input dimension are used to compute outputs.

In this section, we first demonstrate that low levels

of input gain shifted the models into a componen-

tial mode of processing, whereas high levels of in-

put shifted them into a conjunctive mode of

processing. We then explain why input gain had

this effect, and why it was responsible for the

observed dissociation.
The degree of conjunctivity in processing was

measured by manipulating the value of a single in-

put dimension, while holding the remaining

dimensions constant at a neutral value of 0.5.

Thus, the manipulated dimension was responsible

for any changes in output activations. As a given

input dimension was manipulated, activation val-

ues were monitored for the 11 output units that
did not correspond to the manipulated input

dimension. The distance from baseline for each

activation value (i.e., closeness to asymptote) was

then calculated, and these distances were averaged

across all output dimensions, for manipulations of

all 12 input dimensions. This calculation was a

measure of the conjunctivity of processing because

higher values indicated that input dimensions were
having greater effects on non-corresponding out-

put dimensions.

The measure of conjunctivity is plotted in Fig. 4

as a function of input gain and model type. The
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Fig. 4. A measure of conjunctive processing in the feed-forward

and recurrent model as a function of input gain.
figure shows, in both models, the conjunctivity of

processing increased with higher levels of input

gain. In the next two sections, we explain why

componential processing at low levels of input
gain could not support the processing of irregular

items, and why conjunctive processing at the high

levels of input gain could not support the process-

ing of novel items.

3.2. Low levels of input gain

Low levels of input gain caused the sigmoidal
shape of the hyperbolic tangent function to flatten

and become more linear. Linear hidden units can

only support a linearly separable mapping between

the inputs and outputs. It is also the case that input

dimensions are processed as independent compo-

nents in a linearly separable mapping. In the qua-

si-regular mapping created for these models, the

identity mapping was linearly separable, whereas
the exceptions to the identity mapping were not.

Moreover, hidden units operated in their linear

range early in training because the positive and

negative random initial weights tended to cancel

each other out on any given input; therefore, net in-

puts to the hidden units tended to be small early in

training, as if input gain was low (even though in-

put gain remained fixed at 1 throughout training).
The upshot of these points is that the linearly sep-

arable identity mapping was learned in the linear

range of the hidden units early in training, and

exceptions to the identity mapping were learned

only after hidden unit activations moved closer to

their asymptotes. An analysis confirmed this state-

ment: after only 30 epochs of learning, the model

applied the identity mapping to all 4096 possible in-
put patterns, and hidden unit activations were 0.35

away from zero on average, i.e., they were mostly

operating in their linear range. Therefore, one can

infer that low levels of input gain invoked the com-

ponential, linearly-separable identity mapping that

was learned early in training.

3.3. High levels of input gain

In contrast with low levels of input gain, high

levels cause the sigmoidal shape of the activation

function to sharpen and more closely mimic a step
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function. The consequence of this sharpening is

that hidden unit activations are more likely to be

near their asymptotes. This point is important be-

cause it is the asymptotic behavior of hidden units
that enables them to use conjunctions of input val-

ues in mapping their inputs onto their outputs

(O�Reilly, 2001). The XOR function is the quintes-

sential example in which the conjunction of two in-

put values must be considered in order to produce

the correct output, and at least one nonlinear hid-

den unit is necessary to compute this function in a

feed-forward neural network. In the quasi-regular
mapping learned by the distributed model, it was

the irregularities that engaged the asymptotic

behavior of the hidden units in order to process

conjunctions of input values. On this logic, one

can say that high levels of input gain placed a

greater emphasis on conjunctive processing of in-

put values.

Given this functional effect of input gain, why
would an emphasis on conjunctive processing

cause a selective impairment in the processing

of novel input patterns? The answer begins with

the fact that the conjunctive processing was used

to handle irregularity in the quasi-regular map-

ping, whereas, it is the regularity in this mapping

that provides the basis of correct performance

on novel inputs. Therefore, the conjunctions
learned for irregular inputs will tend to be incor-

rectly applied to novel inputs at high levels of in-

put gain.

This logic leads one to ask, why was perform-

ance on regular known items intact at high levels

of input gain? If conjunctions were learned only

to process irregularities, then one would have to

conclude that the emphasis on conjunctions at
high levels of input gain should interfere with the

regular identity mapping for all input patterns,

both novel and known. What is missing here is

that conjunctions were learned not only to process

the irregularities for known items, but regularities

as well. This consequence of using conjunctions

necessarily followed from the use of distributed

representations over the hidden units. When the
asymptotic behavior of hidden units was engaged

through learning, it affected the processing of all

known inputs, both irregular and regular, because

every hidden unit contributed to the processing of
every input dimension, for every input pattern.

Therefore, conjunctions had to be learned for the

regularities in the known items, and these conjunc-

tions supported correct performance on known
items at high levels of input gain.
4. Conclusions

The current simulations demonstrated how a

double dissociation can occur in a non-modular

system via the manipulation of a control parame-
ter. Analyses showed that input gain shifted the

current models between conjunctive and compo-

nential modes of processing. This shift produced

a pattern of behavior that was reminiscent of the

word naming impairments that characterize pho-

nological and surface dyslexia. Conjuctive modes

impaired the processing of novel items, whereas

componential modes impaired the processing of
irregular items.

The current work is not intended as an explana-

tion of any particular language pathology. It is un-

clear whether input gain would provide a

satisfying account of specific empirical results.

For instance, input gain would not appear to han-

dle dissociations in which all regular items, both

novel and known, are impaired (Marslen-Wilson
& Tyler, 1997, 1998; Ullman, Corkin, Coppola,

& Hickok, 1997). However, these simulations

make a strong statement against an often utilized

interpretation of double dissociations. While a

modular system offers a transparent explanation

of a double dissociation, the observation of such

a phenomenon should not be interpreted as neces-

sitating separable components.
Further, empirical and computational work is

necessary to determine whether input gain can

provide the best available account for certain cases

of dissociations. Some of this work would need to

formulate the neural basis of input gain. There are

several plausible candidates for the neural mecha-

nism of sensitivity-modulation which is analogues

to the function of input gain in the current models.
For instance, it is well-established that some neu-

romodulators can change the sensitivity of neu-

rons to their inputs (see Fellous & Linster

(1998)). Impairments in sublexical or lexical
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processing might be explained by brain damage

that disrupts the function of an appropriate

neuromodulator.

Another possible neural basis of input gain is a
modulatory system, rather than a neuromodula-

tor. Such a system would serve to modulate the

sensitivity of neurons in networks outside of itself,

with the purpose of regulating neural systems, or

adapting them to changes in task demands. If a

modulatory system existed to regulate the balance

of componential and conjuctive processing via in-

put gain, then damage to the modulatory system
might cause ‘‘mode locking’’ into either compo-

nential or conjunctive processing.These ideas are

speculative for now, but they demonstrate the

plausibility of an input gain account of surface

and phonological dyslexia.

The current simulations and the single-route

model of word reading (Kello, 2003; Kello &

Plaut, 2003) comprise the beginnings of a single-
route alternative to dual-route theories of word

reading. They address one of the biggest challenges

to any single-route theory of word reading,

namely, the neuropsychological evidence for sepa-

rable sublexical and lexical processing routes.

However, many challenges remain. How would a

single-route alternative be consistent with evidence

for separable brain regions correlated with sublex-
ical and lexical processing, to the extent that such

evidence exists? Are there any testable differences

between explanations of double dissociations using

control parameters and those using separable com-

ponents? Could a large-scale, single-route model

account for any of the more detailed findings in

the vast literature on word reading? These ques-

tions await further research.
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