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Abstract The extent to which a cognitive system’s

behavioral dynamics fit a power law distribution is con-

sidered indicative of the extent to which that system’s

behavior is driven by multiplicative, interdependent inter-

actions between its components. Here, we investigate the

dynamics of memory processes in individual and collabo-

rating participants. Collaborative dyads showed the char-

acteristic collaborative inhibition effect when compared to

nominal groups in terms of the number of items retrieved in

a categorical recall task, but they also generate qualita-

tively different patterns of search behavior. To categorize

search behavior, we used multi-model inference to com-

pare the degree to which five candidate models (normal,

exponential, gamma, lognormal, and Pareto) described the

temporal distribution of each individual and dyad’s recall

processes. All individual and dyad recall processes were

best fit by interaction-dominant distributions (lognormal

and Pareto), but a clear difference emerged in that indi-

vidual behavior is more power law, and collaborative

behavior was more lognormal. We discuss these results in

terms of the cocktail model (Holden et al. in Psychol Rev

116(2):318–342, 2009), which suggests that as a task

becomes more constrained (such as through the necessity

of collaborating), behavior can shift from power law to

lognormal. This shift may reflect a decrease in the dyad’s

ability to flexibly shift between perseverative and explo-

rative search patterns. Finally, our results suggest that a

fruitful avenue for future research would be to investigate

the constraints modulating the shift from power law to

lognormal behavior in collaborative memory search.

Keywords Interaction dominance � Power laws � Multi-

model inference � Collaborative recall � Collaborative

memory � Memory foraging � Lévy processes

Introduction

The category-based recall or semantic fluency task has a

long tradition of use in empirical investigations of memory

(Bousfield and Sedgewick 1944). Typically, participants in

these tasks are asked to recall as many items that belong to a

given category as possible, within some time window. The

pattern of responses is often clustered: Short bursts of many

items are remembered together, interspersed with longer

intervals in which nothing can be recalled. Items that are

recalled in temporal clusters also tend to be semantically

similar (Bousfield and Sedgewick 1944; Troyer et al. 1997;

Hills et al. 2012). This retrieval pattern, with frequent,

clustered short intervals but occasional long intervals

between clusters, is similar to the pattern of path lengths

exhibited by animals foraging for food or other resources in

physical environments (for example, see Sims et al. 2007;

Viswanathan et al. 2011). This led Rhodes and Turvey

(2007) to conceptualize memory retrieval as a foraging

process across a cognitive or information landscape. They

found that the intervals between consecutive recalls are

consistent with Lévy flights—random walks in which path

lengths (intervals) are power law distributed such that each

length L is observed with probability P(L) * L-l, and
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0\l B 3. The Lévy flight has received a considerable

amount of attention in the animal foraging literature, where

it has been suggested that Lévy flights are an optimal search

strategy (Viswanathan et al. 1999; Viswanathan et al. 2011),

but it has also been noted that other search processes

(strategies) give rise to similar resulting search patterns, and

in fact these patterns may not be optimal for all environ-

ments (Benhamou 2007; Plank and James 2008).

In the cognitive domain, Hills et al. (2012) have used the

theoretically different but empirically related framework of

area-restricted search modeled as a correlated random walk

to describe the same free recall behavior. In the ecological

domain, area-restricted search describes a strategy where a

forager searches a restricted, or local, area with bountiful

resources until the availability of those resources declines.

At that point, the forager will move to a new area and begin

the process again (Karieva and Odell 1987). Notably, both

strategies (Lévy flights and area-restricted search) produce

approximately similar behavior: frequent short path lengths

and occasional long path lengths (see Reynolds 2010).

Using a spatial search task with human participants, Hills

et al. (2013) found evidence that both Lévy flights and

area-restricted search might be used strategically by the

same agent depending on the resource context. Since the

cognitive and information landscape of memory is abstract,

and presumably different across individuals, the actual

foraging processes and the cognitive mechanisms which

generate them can only be inferred from the resulting recall

patterns. A common theme across these perspectives,

though, is that retrieval patterns might be indicative of the

underlying cognitive processes, whatever they may be.

In the exploratory project presented here, we consider

whether retrieval patterns differ when remembering is

performed collaboratively. Remembering is often per-

formed in a collaborative context, but empirically this

interactive context is almost always associated with nega-

tive performance outcomes (Rajaram and Pereira-Pasarin

2010; but see Harris et al. 2010). Increasingly, researchers

are considering the processes by which the joint action of

remembering occurs (Tollefsen and Dale 2012) to help

explain why collaborative memory performance is worse

than (and conversely, why it can sometimes be better than)

individual memory performance. Here, we consider both

performance outcomes and retrieval patterns to investigate

whether cognitive search processes change depending on

social context. We predict that interactivity will alter the

dynamics of individuals in a dyad compared to the

dynamics of an individual performing the same task alone.

Work by Tollefsen (2006), Schmidt and O’Brien (1998),

Yoshimi (2012), and Dale et al. (2013), among others,

suggests that the coupling between two agents will result in

qualitative change in the distribution of their retrieval

intervals.

In order to quantify timing distributions across condi-

tions, we draw on tools from complexity science and sta-

tistical mechanics. In this domain, statistical distribution

matching can be used to determine the nature of interaction

among the component parts of a complex system. Cogni-

tive scientists have begun using these techniques to deter-

mine whether cognitive processes are more component

dominant, in which case a system’s subcomponents act and

contribute independently to system-wide behavior, or

interaction dominant, in which case the effects of any one

component depend on the behavior of another, so that its

effects on system-wide behavior are nonlinear (Van Orden

et al. 2003; Holden et al. 2009; Stephen and Mirman 2010).

To illustrate the distinction between component dominance

and interaction dominance, consider a simple system

S composed of two random variables a and b, which can

each range from 1 to 10. System behavior depends not only

on the values of a and b, but also on the relationship

between them (see Stephen and Mirman 2010). Mathe-

matically, that relationship might be addition (S = a ? b),

multiplication (S = a 9 b), or even a power relationship

(S = ab). In the additive system, possible values of S range

from 2 to 20, and a probability density function will be

normally distributed (Fig. 1a). This system is linearly

decomposable in the sense that the effects of each com-

ponent are independent: a will have the same effect on

S regardless of the value of b. This is the strictest example

of a component-dominant system. In the multiplicative

system, S = a 9 b, resulting values of S range from 1 to

100, and the probability density function shows that the

median and mode have shifted to lower values, with a

longer tail extending to higher values (Fig. 1b). This

skewed distribution results from the multiplicative inter-

action between the variables. That is, the effect of variable

a on S will be different depending on the value b. The

effects of each variable are no longer entirely independent,

but instead depend on the context of each other’s values.

Compared to the additive system, this system is more

interaction dominant. In the system S = ab, the effect of

interaction is further amplified, resulting in the increased

skew of the probability density function (Fig. 1c).

These three examples do not exhaust the space of pos-

sible systems and interactions, but are meant only to

illustrate the variation between component dominance and

interaction dominance in systems. Two other important

concepts in this literature, which we will return to in the

conclusion, are interdependence and feedback. In the

examples above, the values of a and b are selected inde-

pendently from one another. That is, a does not actually

change the value of b, but may change the effects of b on

system-wide behavior. However, a considerable amount of

literature has noted the pervasiveness of scaling laws in

cognitive systems, whereby a system exhibits self-
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similarity at different scales (Kello et al. 2010) and the

relationship between component variables becomes more

complex. Kello and colleagues have described, more

specifically, the pervasiveness of 1/f scaling (Kello et al.

2007, 2008), which signifies long-range correlations in the

temporal dynamics of a system, so that effects at any

period of time have nonnegligible effects into the future.

One mechanism by which long-range correlations can be

generated is through multiplicative feedback effects, where

the perturbations to one component perturb other compo-

nents, which in turn may come to perturb the initial com-

ponent once again. That is, in these more complex systems

(as compared to the simple, independent-component sys-

tem described earlier), changes to a may cause changes to

b, indicating interdependence of the two variables, and

these changes may reverberate back to a, illustrating an

example of a feedback effect.

Stephen and Mirman (2010) have used the method of

statistical distribution matching to fit distributions of eye

movements to five candidate statistical distributions which

vary from component dominant to interaction dominant.

They found that their empirical data were best fit by and

described as an interaction-dominant system. Rhodes

(2013) used statistical distribution matching to identify

patterns of interaction dominance in individual memory

retrieval during a category-based free recall task. Here, we

expand upon Rhodes’ study by using multi-model infer-

ence to investigate whether interaction-dominant patterns

persist during collaborative recall. Because two interacting

agents perform approximately as one coherent group, are

individual-level dynamics constrained by higher-order

constraints of the dyad, as a unit of analysis unto itself?

Will the pattern of results from a cohesive dyad unit be

comparable to that of an individual? We show that multi-

model inference can tease apart changes in the dynamics of

individual and collaborative recall behavior, and show how

these patterns might relate to the success of group memory

behavior, in terms of number of items retrieved. Finally,

we use latent semantic analysis (LSA) to provide insights

into the semantic similarity of items retrieved by the

members in each group.

Materials and methods

For the current study, either an individual or a dyad com-

pleted two 20-min semantic fluency tasks. One semantic

category was the set of all animals, and the other was cities

and towns in California. The two categories were presented

in counterbalanced order, with a break between sessions.

Here, we discuss the results from only the animals cate-

gory, so that our results can be considered in the context of

other work (e.g., Bousfield and Sedgewick; Rhodes and

Turvey 2007; Rhodes 2013; Thompson and Kello 2013) on

semantic fluency.1 In addition to comparing the number of

items recalled, we employ multi-model inference to char-

acterize the distributional properties of the time series of

recall events in order to investigate the search processes

employed in the different conditions, and we use LSA to
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Fig. 1 Example probability

distributions for three types of

systems, where system behavior

S = a ? b (left column),

S = a 9 b (middle column),

and S = ab (right column). The

top row shows normalized

histograms for 10,000 actual

trials, where a and b are random

numbers between 1 and 10. The

bottom row shows the same data

plotted on log–log coordinates

1 We refer the reader to Szary et al. (2015) for a description of and

results from the California locations task.
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explore semantic differences between members of each

group condition.

Participants

Participants were recruited from a subject pool of

University of California, Merced undergraduate students

who participated for course credit. All participants reported

fluency in English. The individual condition included 12

participants (4 males, 8 females), while the dyadic condi-

tion included 10 dyads composed of 20 participants (2

males, 18 females). None of the dyads included partners

who knew one another prior to the experiment. Across

conditions, the average age was 19.75 (SD = 1.55 years).

Informed consent was obtained from all participants

included in the study. All procedures performed in studies

involving human participants were in accordance with the

ethical standards of the institutional and/or national

research committee and with the 1964 Helsinki Declaration

and its later amendments or comparable ethical standards.

Procedure

Before the study began, dyads were given 5 min to intro-

duce themselves while the experimenter left the room. All

participants were seated comfortably at a table in a small

experiment room, with dyads facing each other across the

table. Participants wore Shure microphone headsets, con-

nected to a computer in another room via a USB preamp, to

record verbal responses. Participants completed two

20-min recall tasks, with a short break of roughly 3 min in

between. For each recall task, participants recalled as many

items as possible from either the ‘‘animal’’ category or the

‘‘cities and towns in California’’ category, but as mentioned

previously, only results from the animal category are pre-

sented here. Before receiving their category assignment,

participants were given the following instructions: ‘‘In a

moment, I’ll give you the name of a category. Your goal is

to (work together to) think of as many items from that

category as you can. When you think of an item, just say it

out loud. You can be as specific or as general as you wish.

For example, if the category were ‘food’, you could say

‘fruit’, and you could also say ‘orange’ or ‘mandarin

orange’.’’ In order to minimize awkwardness or discomfort,

dyads were invited to converse freely with their partners

during each session, but encouraged to stay focused on the

task of coming up with as many items as possible.

Datasets

Participants’ responses were transcribed using the Praat

audio analysis software. The utterance for each retrieved

item was isolated, and its onset time determined, but

extraneous conversation and noncategory utterances were

ignored.2 Two variables of interest were collected for each

dataset: (1) score (the number of unique items retrieved)

and (2) the interretrieval intervals (IRIs; the milliseconds

between the onsets of consecutive recalls).

In order to investigate the effects of collaboration on the

recall task, we consider performance at both the individual

level (one participant) and the group level (two partici-

pants). Group-level datasets are created by merging

sequences of recalled items from individuals and treating

them as one. The two original datasets we collected were

single participants working alone (independents, n = 12)

and pairs of two participants working collaboratively

(dyads, n = 10). For the purposes of comparison, we also

generated three artificial datasets: single partners (n = 20),

nominal pairs (n = 66), and mismatched pairs (n = 180).

The datasets, as illustrated in Table 1, vary on three

dimensions: the number of participants included in the

analysis (one or two), the interaction condition (worked

individually or worked collaboratively), as well as whether

the datasets were real or artificially generated. The single

partners dataset is created by isolating individual-level

behavior from each participant who worked in a dyad,

which allows us to see how individuals behave during

collaboration. The mismatched dataset is all possible

pairings of these collaborating individuals (all unique

combinations of single partners), but matched with those

with whom they had not actually participated. The nominal

dataset is all possible pairings of individuals who worked

alone (all unique combinations of independents). The

mismatched and nominal groups allow us to tease apart

whether any differences between individual and group

performance are a product of having a different number of

participants, or whether the collaboration itself is having an

effect.

Data analysis

As noted, we compare the recall performance of the dif-

ferent conditions by considering both the outcome (score)

and the process of retrieving items from memory (IRIs).

IRI distributions are characterized using multi-model

inference, in which the relative fit of a set of candidate

models is determined and a best fitting model can be

selected (see Rhodes 2013). Here, we consider the normal,

exponential, gamma, lognormal, and Pareto (power-law)

distributions. The normal distribution is indicative of a

system with additive dynamics, while the exponential and

2 While obvious non-category utterances were removed, some items

were retained such as imaginary, extinct, or incorrectly named

animals. A second analysis was performed where these items were

removed, but the relative between-condition scores were unaffected.
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gamma distributions are indicative of additive systems with

slight multiplicative interactions. The two models that have

received the most attention in the domain of search pro-

cesses are the lognormal and Pareto distributions, both of

which are indicative of systems with multiplicative, inter-

action-dominant dynamics. The lognormal distribution is

considered a special case of multiplicative interaction in

which feedback effects are sufficiently constrained (Farmer

1990), while the Pareto distribution is thought to be

indicative of a multiplicative system with stronger feed-

back effects and interdependence. In multi-model infer-

ence, each candidate model is fit to each IRI distribution

using maximum likelihood estimation (MLE). At each

model’s best fitting parameters, negative log-likelihoods

are used to determine Akaike’s Information Criterion

(AIC), which is used as a measure of the relative fit of the

candidate models (see Burnham and Anderson 2002). In

addition to determining the best fitting of the distributions

using AIC, the log-likelihoods from MLE are used to

compute log ratios for conditions in which two models

appear to fit. The log ratio between two models is simply

the difference in their log-likelihoods and can be used to

directly quantify the goodness-of-fit of one model over the

other (Stephen and Mirman 2010; Singer and Willett

2003).

For those distributions that are best fit by the Pareto

distribution, we consider the slope parameter -l, as gen-

erated by MLE, in the context of the literature on Lévy

foraging. As noted above, 1\l B 3 is taken as indicative

of Lévy foraging, and l = 2 is considered optimal (Vis-

wanathan et al. 1999). For each dataset best fit by the

Pareto, we calculated the magnitude of the deviation

between the observed l and the theoretically optimal

l = 2. We then test whether these l-deviation values are

correlated with task performance, as in previous research

(e.g., Rhodes and Turvey 2007).

Finally, we look deeper into the effects of collaboration

on group performance using LSA. LSA is a statistical tool

that can quantify the similarity between two words or

groups of words in some semantic space. Here, we use the

online LSA tool (lsa.colorado.edu) described in Landauer

et al. (1998), specifying the semantic space as general

reading (up to the first year of college). For the set of

retrieved items from each participant, a term-document

matrix is created which notes the occurrence of each word

from the semantic space, without log entropy weighting.

This matrix is then reduced using singular value decom-

position. Finally, the cosine between the matrices for two

datasets represents their similarity on a scale of -1 to 1,

where 1 would reflect identical datasets.

Results

Number of items recalled

Mean retrieval scores for each condition and category are

shown in Table 2. A one-way analysis of variance showed

that the effect of condition was significant, F(4,

283) = 41.56, p\ 0.0001. More items were retrieved by

dyads (M = 157.7, SD = 18.32) than by independents

(M = 116.58, SD = 39.09), a difference found to be sta-

tistically significant in a two-sample t test, t(20) = 3.04,

p\ 0.01. Among both individual-level datasets,

Table 1 Datasets

Interaction condition

None (independent) Collaborative

Level of analysis

One participant Independent (n = 12) Single partner (n = 20)

Two participants Nominal (n = 66) Dyad (n = 10)

Mismatch (n = 180)

The composition of the five datasets used in analyses is illustrated.

The two bolded datasets (independent, dyad) are those originally

collected. The other three (single partner, nominal, and mismatch) are

artificial datasets generated for comparison

Single Partner Independent Dyad Nominal Mismatch
0
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300
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or

e

Fig. 2 Data points show scores

by condition (plus x-jitter).

Lines show means, boxes show

95 % confidence intervals for

the means
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independent participants found significantly more items

than single partners isolated from their collaborators

(M = 84.85, SD = 42.81), t(30) = 2.71, p\ 0.05. Among

group-level datasets, actual dyads were outperformed by

nominal groups (M = 186.38, SD = 42.81), with marginal

significance t(74) = 2.08, p\ 0.05, and did slightly better

than mismatched groups (M = 144.59, SD = 31.08),

although this difference did not reach significance. Table 2

summarizes the number of unique items retrieved in each

condition, as well as the number of repeats that occurred.

Figure 2 shows scores for all conditions.

Distribution of recall events

Table 3 shows the number of datasets from each condition

that were best fit by each model, according to multi-model

inference. None of the 288 datasets were best fit by the

normal distribution. Sixty-seven were best fit by the

exponential, 44 by the gamma, 156 by the lognormal, and

21 by the Pareto. Figure 3 plots the percentage of datasets

from each condition that is best fit by each of these four

models. Notably, the exponential and gamma distributions

only appear as fits to the artificial datasets, but not to

either of the two experimental conditions (independent

and dyad). All datasets from the experimental conditions

are best fit by either the lognormal or Pareto distribution,

which are the two models considered to be indicative of

interaction dominance. However, the majority of dyad

datasets (9/10) were best fit by the lognormal distribution,

while the majority of independent datasets (10/11) were

best fit by the Pareto distribution. Observed distributions

for dyad and independent datasets, along with the best

fitting distribution at their estimated parameter values, are

shown in Fig. 4. When considering the individual-level

behavior of single partners extracted from the collabo-

rating dyads, some single partners (6/20) maintained the

Pareto distribution that characterizes individuals working

independently, but the majority (13/20) switched to

behavior fit by the lognormal distribution. A Chi-square

test of independence showed a significant relationship

between condition and best model fit, v2 (12,

N = 288) = 209.07, p\ 0.0001.

Single Partner Independent Dyad Nominal Mismatch
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Fig. 3 Normalized counts of

the best fitting distributions for

each condition

Table 2 Mean number of unique items retrieved and the number of

items repeated (standard deviation of the means in parentheses)

Retrieved (SD) Repeated (SD)

Single partner (n = 20) 84.85 (27.09) 7.15 (9.84)

Independent (n = 12) 116.58 (39.09) 27.67 (81.72)

Dyad (n = 10) 157.70 (18.32) 26.30 (20.30)

Nominal (n = 66) 186.38 (42.81) 102.12 (109.18)

Mismatch (n = 180) 144.59 (31.08) 39.41 (18.63)

Table 3 Counts of the number

of the best fitting distributions

from each condition, from

multi-model inference

Normal Exponential Gamma Lognormal Pareto

Single partner (n = 20) 0 1 0 13 6

Independent (n = 12) 0 0 0 1 11

Dyad (n = 10) 0 0 0 9 1

Nominal (n = 66) 0 0 12 54 0

Mismatch (n = 180) 0 66 32 79 3
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Log ratios

To quantify the relative degree to which the lognormal and

Pareto distributions fit our data, we computed the log ratio,

which is the difference in log-likelihoods from MLE. The

log ratios for independents favored the Pareto (M = 36.13,

SD = 41.47), while the log ratios for dyads favored the

lognormal (M = -332.76, SD = 277.87). Log ratios for

the artificial single partner, nominal, and mismatched

datasets also all favored the lognormal distribution

(M = -18.98, -522.55, -691.99, SD = 36.48, 327.23,

636.02). The difference in mean log ratios was significantly

different between independents and dyads, t(20) = 4.56,

p\ 0.001, and between independents and single partners,

t(30) = 3.93, p\ 0.001. Although both single partners and

dyads are fit by the lognormal distribution most often, their

log ratios are significantly different, t(28) = 5.05,

p\ 0.001. Dyads are not significantly different from

nominal or mismatched groups, though. Log ratios are

plotted in Fig. 5.
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Fig. 4 IRI distributions for each individual (two left columns, I1–12) and dyad (two right columns, D1–10), along with the best fitting
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Lévy foraging

MLE was used to calculate the best fitting slope parameter

-l for each of the datasets best described by the Pareto

distribution. All Pareto-distributed datasets had l consis-

tent with Lévy foraging, 1\ l B 3 (M = 1.49,

SD = 0.10). Deviations between each estimated l and the

theoretically optimal l = 2 were calculated. Across all

datasets, the l-deviation was negatively correlated with

score r(19) = -0.64, p\ 0.005. That is, the closer the

slope parameter of the search distribution is to 2, the higher

the score. Correlations are shown in Fig. 6. Among just the

independent participants, this correlation persists,

r(9) = -0.70, p\ 0.05, but it disappears for all other

datasets.

LSA

Similarity ratings between the two participants from each

group-level dataset did not differ between dyad groups

(M = 0.772, SD = 0.04) and nominal groups (M = 0.772,

SD = 0.05), but were slightly lower for mismatched

groups (M = 0.757, SD = 0.05). Similarity measures are

plotted in Fig. 7. A one-way analysis of variance did not

show a main effect of group condition. Across all groups,

the LSA similarity measure was positively correlated with

score r(254) = 0.233, p\ 0.001, but the pattern changes

within groups. That is, both mismatched and nominal

groups showed positive correlations between LSA simi-

larity and score, but this only achieved significance for the

mismatched group, r(178) = 0.248, p\ 0.001, which

likely drove the significant effect across condition. Within

just the dyads, however, there is no significant correlation

between LSA similarity and score, but there is a slight

trend in the reverse direction. That is, for collaborating

dyads, there is a subtle (though nonsignificant) negative

relationship: Increased LSA similarity may be related to

decreased score. Figure 8 plots LSA similarity measures

against score for all groups.

Discussion

Consistent with previous work (Barnier et al. 2008; Szary

and Dale 2013, 2014), we found that dyads retrieved sig-

nificantly more unique items than individuals, but signifi-

cantly less than a nominal grouping of those individuals,
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demonstrating the classic collaborative inhibition effect

(Rajaram and Pereira-Pasarin 2010). Our task differs from

the larger body of collaborative inhibition tasks, though, in

that it tests the retrieval of existing knowledge using a cat-

egorical free recall task, instead of requiring lists to be

learned during the task. We also find that correctly paired

dyads retrieved more items than incorrectly paired (mis-

matched) groups, but this trend did not achieve significance.

In terms of the distribution matching results, we find that

only the artificially generated datasets are ever best fit by

component-dominant models (exponential and gamma).

This is unsurprising, given that these datasets actually

contain two independent components that are only com-

bined afterward. Of the two models indicative of interac-

tion dominance, we replicate Rhodes’ (2013) finding that

individuals’ retrieval patterns are almost entirely best fit by

the Pareto distribution, which is considered to be the

strongest indicator of an interaction-dominant system.

When two people are working collaboratively in a dyad,

the dyad as a unit unto itself generally produces retrieval

patterns that are lognormally distributed, indicative of an

interaction-dominant system with relatively stronger con-

straints (such as the need to work collaboratively with

another person). Interestingly, although the Pareto distri-

bution is prevalent in retrieval patterns of individuals

working alone, it is comparatively rare in the retrieval

patterns of individuals working as members of a collabo-

rating dyad. The majority of these collaborating individuals

produced lognormally distributed retrieval patterns.

We looked deeper into this result by computing the log

ratio for Pareto over lognormal distribution fit. Given the

counts of best fitting distributions for each condition, it is

unsurprising that the independent condition is the only one

where retrieval patterns are reliably best defined by the

Pareto distribution (indicated by the positive mean in

Fig. 5). By illustrating the relative fit of Pareto versus

lognormal distributions, the log ratio shows that while

individuals working collaboratively have retrieval patterns

that are most often fit by the lognormal, they are still

somewhat ‘‘Pareto like,’’ as indicated by the small negative

value of their mean log ratio. Of the other lognormally

inclined retrieval distributions, those from dyads are the

next most Pareto like, followed by nominal groups. Mis-

matched group datasets show the strongest fit to lognormal

as compared to Pareto, indicating that system behavior is

increasingly constrained.

Of all datasets fit by the Pareto distribution, we

computed the difference between the estimated slope

parameter (from MLE) with the theoretically optimal

value for Lévy flights. We found a significant correlation

between this difference and performance—slope param-

eters closer to the theoretically optimal l = 2 were

associated with higher retrieval scores. Within condi-

tions, this correlation only remains significant for inde-

pendent participants, but we note that the other

conditions have significantly less power. Accurately

determining whether the effect is driven by independents,

or whether the correlation remains for all conditions, will

require additional data.

Although more detailed and rigorous investigation of the

content of retrieved items is necessary, LSA provides ini-

tial insights about the semantic similarity between the sets

of items retrieved by the two members of each group.

Although LSA similarity measures did not differ drasti-

cally across the three group conditions, our results suggest

that semantic similarity may play different roles for dif-

ferent group compositions. That is, we find an overall

positive correlation between semantic similarity and

score—but this effect is largely driven by the artificial

(mismatched and nominal) groups. The fact that this cor-

relation is only present for the artificial groups may reflect

that individuals who remembered more items tended to

remember items that were more or less generic than the less

successful individuals, which would cause consistent but

noninteresting (for the present purposes) patterns in simi-

larity measures. What is more interesting, here, is that for

actual collaborating dyads, we see a trend toward the

opposite relationship: Semantic similarity may be associ-

ated with decreased performance (but more work is nec-

essary to see whether this trend is retained with increased

data points). If this result does hold, one explanation worth

investigating is that when collaborative dyads employ a

‘‘divide-and-conquer’’ strategy across information space,

they are able to recall more items than when exploring the

space together. In the collaborative memory literature,

there is also precedent for this pattern (e.g., Hollingshead
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2001). This suggests that optimal collaboration may require

semantic divergence at either a strategic level (choosing

different areas of focus) or even a component level (where

different participants have different areas of expertise).

LSA is a relatively coarse measure of the semantic recall

trajectories in our dataset, so further research is needed to

build a fuller picture of how the content of retrieved items

may change in itself, or may cause changes to the actual

search processes in different collaborative conditions.

Conclusion

The temporal distributions of memory retrieval differ

depending on social-interaction contexts. Specifically, when

participants work collaboratively on a free recall task, their

recall behavior becomes less Pareto and more lognormal, on

both the individual and group levels. This indicates that

collaborative memory behavior should be regarded as an

interaction-dominant process, but with feedback constraints.

We note, however, that our results do not indicate a perfect

fit to either lognormal or Pareto distributions for any dataset.

The log ratio results, which show that interacting dyads have

distributions that are closer to being fit by the Pareto as

compared to distributions from the artificial, noninteracting

groups, suggest that collaborating groups may still exhibit

some interdependent feedback processes. In fact, Holden

et al. (2009) propose a ‘‘cocktail model’’ in which a system’s

behavior is a mixture of lognormal and power law, the

proportions of which are determined by the existing con-

straints on component interactions. Constraints, which are

decreases in degrees of freedom for the behavior, could

come from the nature of the task, the collaborative context,

or simply the current state of the mind and body.

A cocktail model makes sense given the perspective of

‘‘active internalism’’ described by Yoshimi (2012), in

which two relatively independent systems (two people)

may have some intrinsic internal dynamics, but those

dynamics can become coupled through interaction. The

partial independence of their cognitive processes, along

with the constraints introduced by their interaction, may

bring about stable behavior that flows fluidly into a per-

formance that ‘‘stands between the two extremes because it

combines independent, random variables with multiplica-

tive interactions’’ (Holden et al. 2009, p. 321). This is not

to say that each separate system (each person), unto itself,

would exhibit Gaussian behavior. Instead, it suggests that

there are processes in each system that are not direct par-

ticipants in the coupling. Aspects of each system that do

not become coupled may act as sources of instability in the

combined behavior that renders lognormal distributions.

Considering our findings from this perspective, we sug-

gest that a common process may underlie both individual

and collaborative memory search, but that the constraints

imposed by collaboration transition behavior (on the indi-

vidual level) from power law dominant to lognormal dom-

inant. This transition reflects a decrease in the feedback

effects which allow for small perturbations to be amplified

over time and space (scaling laws). In the complex systems

literature, this amplification property leads power law dis-

tributions to be considered symptomatic of (although not

sufficiently indicative of) self-organizing systems operating

near critical points or phase transitions (Bak et al. 1988; Bak

1996; also see Kello et al. 2010; Van Rooij et al. 2013). In

these systems, components flexibly and adaptively organize

themselves to achieve a context-appropriate balance

between independence and interdependence (Kelso 1995;

Van Orden et al. 2003), which is considered to be optimal

for information transmission through networks (Kello 2013).

It is from this high-information, memory-laden metastability

that emergent properties of cognition can be exhibited

(Kello et al. 2007).

In our task, this means that constraints introduced by

interaction are driving the composite memory systems

further from their metastable critical points. From the Lévy

foraging perspective, this might suggest that effective

search behavior is lost as a system moves away from its

critical point. The members of a composite search system

are moving more independently than as a cohesive search

system. From the area-restricted search perspective, the

loss of power law behavior might reflect a loss of the

ability to move flexibly and adaptively between persever-

ative search paradigms, indicated by short paths within a

local area, and exploratory search paradigms, indicated by

longer jumps to different areas. Regardless of one’s theo-

retical inclinations, our results suggest that collaboration

brings about important, qualitative changes to the dynamics

of composite search systems.

Future work will need to develop these ideas further, but

we conclude the present discussion by reiterating that our

findings are consistent with the notion that memory is an

interaction-dominant cognitive process, and remains so

even in the case of collaborative memory. Still, there are

measurable differences in the interaction-dominant

dynamics of independent versus collaborative memory,

reflected even at the individual level. Understanding the

interaction processes in the collaborative memory system,

and not just the isolable components (individuals) com-

prising them, will be important in understanding how

people remember in social contexts. Understanding what it

is about collaboration that causes the shift from power law

to lognormal behavior, and especially the individual dif-

ferences whereby this happens for some dyads more than

others, may explain why some groups just ‘‘click,’’ while

others are ‘‘out of synch,’’ and may help in the designing of

more cohesive group units.
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