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Abstract 

Motion processing in visual systems is supported by various 
subcortical and cortical microcircuits. However, all motion 
processing requires a basic capacity to integrate and combine 
information over time, as may be true for all microcircuits 
that support perceptual and cognitive functions. In the present 
study, a generic microcircuit model is presented that self-
tunes its recurrent spiking dynamics to its critical branching 
point. The model is shown to have generic memory capacity 
that can be tapped for the purpose of visual motion 
processing. These results suggest that critical branching 
neural networks may provide general bases for spiking 
models of motion processing and other perceptual and 
cognitive functions. 

Keywords: Critical branching; reservoir computing; leaky 
integrate-and-fire neural networks; motion perception. 

Introduction 
Communication in neural networks largely occurs via 
thresholded spiking signals between neurons, which are 
connected by characteristically recurrent loops varying in 
spatial and temporal scale (Buzsáki, 2006). This 
connectivity structure produces patterns of network activity 
that are continually in flux, and in this sense network 
dynamics cannot be characterized by simple point or limit 
cycle attractors. This limits the extent to which attractor-
based neural network models, common in cognitive science 
(e.g. connectionist recurrent networks), can relate the 
brain’s spiking dynamics with cognitive functions. 

In order to investigate how computational functions might 
be based in non-attractor network dynamics, Maass et al. 
(2002b) and Jaeger (2001) developed the concept of 
reservoir computing. The basic idea is that recurrent 
networks can produce dynamics with a generic capacity for 
computation, and so-called “read-out” networks can learn to 
interpret reservoir dynamics for task-specific purposes.  

The present work is focused on Maass et al.’s (2002b) 
liquid state machine (LSM) framework, which consists of a 
pool of leaky integrate-and-fire (LIF) units with random 
recurrent connectivity that is roughly constrained to be local 
and sparse. Time-varying input signals are fed to the 
network to drive and alter the “liquid” spiking dynamics. 
Due to recurrence, thresholding, and other non-linearities, 
the resulting spatial and temporal spike patterns are 
complex, unknown, and unlearned functions of their inputs.  

Nonetheless, these spike patterns will contain information 
about past inputs to the extent that their dynamics are not 
overly convergent or overly divergent (i.e. with Lyapunov 
exponents near one; Bertschinger & Natschläger, 2004). 
Maass et al. (2002b) found that even when the input patterns 

are non-linearly separable (e.g. XOR and parity), simple 
linear classification can be used to categorize inputs based 
on the liquid spike patterns they produce. Thus, simple 
learning algorithms can be used to interpret complex spiking 
dynamics for non-trivial functions and tasks. Moreover, the 
authors showed that functions of past inputs can be learned 
from current spike patterns because memory is an inherent 
property of recurrent dynamics that are not overly 
convergent or divergent. 

The efficacy and simplicity of reservoir computing makes 
it an attractive generic mechanism for computational 
perception tasks. In fact, Verstraeten et al. (2005) used 
LSMs to classify spoken words, and Maass et al. (2002a) 
used them to classify the shapes and velocities of visual 
objects in motion. Burgsteiner et al. (2006) used real-time 
video footage from the RoboCup Soccer challenge to show 
that an LSM could be used to predict the future location of a 
soccer ball in motion. 

Visual Motion Perception 
Biological motion perception starts with motion detectors in 
the retina, where ganglion cells just two or three synapses 
away from rods and cones detect motion in preferred 
directions (Vaney et al., 2000). Behaviorally, sensitivity to 
the direction of motion is demonstrated in motion coherence 
studies (reviewed in Braddick, 1997), where even minute 
asymmetries in the percentage of motion in one or another 
direction can be detected. Information about the direction of 
motion is used for navigation, such as when coherent 
motion across the visual field constitutes optic flow, and for 
the detection of objects in motion, such as when local 
motion differs from global motion (Srinivasan, 2000). 

Tracking objects is another important function of motion 
perception, i.e. the ability to predict future locations of 
objects in motion. This kind of prediction is hypothesized to 
be necessary for accurate smooth-pursuit eye movements 
(Carpenter, 1988), and it enables organisms to either avoid 
collisions with moving objects, or coincide with them as in 
catching or hitting a baseball. For instance, McBeath (1990) 
showed that the motor action of aiming and swinging a bat 
must be implemented when the ball is just over halfway to 
the plate, using a prediction of where the ball will be. 
Similarly, studies of cricket batters’ eye movements show 
predictive eye fixations on where the ball will be when it 
crosses the mound, rather than where it currently is (Land & 
McLeod, 2000). 

The present work focuses on both of these functions of 
motion processing: direction classification and future 
location prediction. Reservoir computing techniques are 
particularly well-suited for motion perception tasks, as both 
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are inherently dynamical in nature.  That is, microcircuits 
involved in motion processing must support a wide range of 
visual functions in the face of constantly changing inputs, 
and must be sensitive to the time course of these inputs. 

Critical Branching Applied to Motion Processing 
In the present study, motion processing tasks are used to 
investigate the efficacy of a generic circuit implemented 
using the reservoir computing framework. The model builds 
on previous work by Maass et al. (2002a) and Burgsteiner et 
al. (2006) who developed LSMs for predicting future 
locations of objects in motion. Here we replicate and extend 
their work by 1) developing a new model for tuning 
reservoir dynamics of LIF units, and 2) applying the model 
to a wider range of tests that more thoroughly examine its 
capacity for motion processing. 

The present model is based on Kello and Mayberry’s 
(2010) work on critical branching neural computation (see 
also Kello & Kerster, 2011; Kello et al., 2011). The basic 
idea is that the computational capacity of reservoir spiking 
dynamics should be enhanced when near their critical 
branching point. Any spiking neural network can be viewed 
as a branching process whereby a spike occurring at time t 
may subsequently “branch” into some number of spikes at 
time t+Δt over the neurons connected via its axonal 
synapses. Let us call the former an “ancestor” presynaptic 
spike, and the latter “descendant” postsynaptic spikes. The 
number of descendants divided by ancestors is the 
branching ratio of a spiking network: σ=Npost/Npre. If σ<1, 
spikes diminish over time and information transmission 
through the network is inhibited by dampened propagation 
of spiking signals. If σ>1, spikes increase over time and 
eventually saturate the network, which also inhibits 
information transmission. σ=1 is the critical branching point 
at which spikes are conserved over time, and so propagate 
without dying out or running rampant. A related concept of 
“homeostatic synaptic scaling” is being investigated in 
cortical circuits, and refers to the idea that these circuits also 
adjust themselves to achieve a balanced level of overall 
activity in terms of mean firing rate (for a review, see 
Turrigiano, 2008). 

Computational models verify the information processing 
advantage of a network with σ=1. For example, an 
analogous critical point between convergent and divergent 
dynamics (i.e Lyapunov exponents near one) has been 
shown to maximize memory capacity in a recurrent network 
of threshold gating units (Bertschinger & Natschläger, 
2004). Here we formulate a reservoir computing model 
using LIF spiking neurons that are more biologically 
realistic compared with threshold gate neurons. Our model 
includes a simple algorithm that probabilistically potentiates 
and de-potentiates synapses so that reservoir dynamics 
approach their critical branching point.  

We presented inputs to the model that come from a 
simple, abstracted visual field. The visual field consisted of 
nothing other than a diamond-shaped moving object on a 
12x12 grid with periodic boundary conditions (i.e. left/right 

and top/bottom edges wrap around). Inputs created and 
perturbed ongoing spiking dynamics in a pool of LIF 
reservoir neurons. A group of perceptron units was used to 
“read out” spiking dynamics for two different functions of 
motion processing: Direction classification and future 
location prediction. These functions are similar, except that 
direction classification requires generalization across 
position (and has a higher chance rate of performance), 
whereas future location prediction is position-specific (and 
has a lower chance rate of performance). 

In Simulation 1, we test whether critical branching 
spiking dynamics have the kind of memory capacity capable 
of simultaneously supporting these two motion processing 
functions, using simple straight-line motions that require 
only modest memory capacity for accurate performance. In 
Simulations 2 and 3, we employ more complex zig-zag and 
spiral motions that require greater memory capacity.  

Reservoir Computing Model 
Our model was based on the LSM framework, which 
consists of three layers: input units, reservoir units (tuned to 
critical branching, hereafter referred to as the “CB layer”), 
and readout units (Figure 1). The input layer was a 12x12 
grid, and each unit projected a synaptic connection onto 
each of the reservoir units with probability 0.5. There were 
400 LIF units in the CB layer, and each one projected 
recurrently onto each other with probability 0.5. There were 
four direction classification readout units, and twenty-four 
location prediction readout units (representing two 12-unit 
axis coordinates). Each unit in the CB layer projected onto 
every readout unit. Input patterns were diamonds with sides 
approximately 7-8 units in length. 

 

 
Figure 1: Model architecture. Gray squares show example 
spike patterns, and blue lines represent synaptic connectivity 
 
Model Variables and Update Equations. LIF units 
generally have the following variables (Roman letters) and 
parameters (Greek letters): A membrane potential Vi for 
each neuron i, a membrane threshold θi and membrane leak 
λi, and a level of potentiation wj for each axonal synapse j, 
where wj>=0 for excitatory neurons and wj<=0 for inhibitory 
neurons. Models may also include variable synaptic delays 
τj, as well as parameters governing the time course of action 
potentials and postsynaptic potentials (e.g. membrane 
resistance). 

Our model included all of the above, except that action 
potentials and postsynaptic potentials were instantaneous for 
the sake of simplicity. We sought to enhance the 
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biologically plausibility of the model with 1) variable 
updates that were local in time and local with respect to 
immediately connected synapses and neurons (numerical 
values were not transmitted over connections among 
neurons, as they are in e.g. backpropagation), and 2) 
synaptic and neuronal updates were asynchronous and 
event-based. The latter criterion helped further the 
plausibility of our critical branching tuning algorithm.  

Each update event in the model begins when a given 
neuron receives as input a postsynaptic potential Ij at time t, 
which may either come from another neuron within the CB 
layer, or from the input layer: 

,        [1] 
where  denotes the instantaneous update of a variable, 
and is the previous time that Vi was updated. Thus, the 
model included continuous exponential leak, applied each 
time a given neuron received an input. Immediately after 
each Vi update, if Vi>θi, then Vi 0, and a postsynaptic 
potential Ij was generated for each axonal synapse of i. Each 
Ij=wj, and was applied at time t+τj.  

In a typical connectionist model, wj can be any real-
valued number, possibly bounded by some minima and 
maxima. However, neurophysiological evidence indicates 
that synapses may only have a limited, discrete number of 
levels of potentiation, possibly just two (Petersen et al., 
1998). Therefore we used binary-valued synapses in order to 
limit the number of potentiated synapses (wj≠0), and to 
enable a stochastic tuning algorithm. In particular, each 
synapse had two possible strengths i.e. levels of 
potentiation, 0 or φj. Each LIF model neuron has two free 
parameters, λi and θi, and each synapse has two free 
parameters, τj and φj. Values for all four free parameters 
were sampled randomly from uniform distributions whose 
ranges were set to reasonable default values. In particular, 
values were real numbers in the ranges 1 < θi < 2, 0.5 < λi < 
1, 1 < τj < 1.5, 1 < φj < 2 for excitatory units, and 0.1 < φj < 
1 for inhibitory units. The decision to set φj higher for 
excitatory units was driven by performance considerations, 
rather than neurophysiological data. 

The set of membrane potentials V and postsynaptic 
potentials I comprise the dynamics of neurons in our LIF 
model. These variables are governed by event-based updates 
(Eq 1, plus threshold dynamics) that may occur 
asynchronously across neurons (at any point in continuous 
time, simulated with arbitrary precision). The set of synaptic 
weights w comprise the dynamics of synapses, and are 
governed by the critical branching algorithm described next. 

 
Self-Tuning Algorithm. The objective of the self-tuning 
algorithm is to potentiate and de-potentiate synapses so that 
each ancestor spike is followed by one descendant spike on 
average. A local estimate for σ is computed over the 
interspike interval (ISI) for each model neuron i. This means 
that only Npost,i need be estimated, because Npre,i=1 by 
definition, with respect to a given neuron’s ISI. Thus, to 
achieve critical branching, Npost,i should sum to one.  

When a given neuron spikes, its local estimate of σ is 
reset, Npost,i 0. For each axonal synapse’s first spike 
occurring at time t, Npost,i was incremented by . 
For each increment, each descendant spike was weighted as 
a decaying function of the time interval between pre- and 
postsynaptic spikes, with maximal weighting when the 
former was immediately followed by the latter.  

The sum of time-weighted descendants is used (before it 
is reset to zero) each time the neuron spikes to update 
weights on its axonal synapses. In particular, if Npost,i<1, 
then the update wj φj is performed for each synapse j with 
probability  

,       [2] 
where η is a global tuning rate parameter (fixed at 0.1), and 
U is the number of synapses available for potentiation. 
f(si)  if neuron i was excitatory, and 
f(si)  if inhibitory. If Npost,i>1, then perform the 
update wj 0 with probability set according to Eq 2, except 
U is the number of synapses available for de-potentiation, 
and the assignment of f(si) is switched for excitatory versus 
inhibitory neurons. 

In essence, the critical branching algorithm potentiates 
synapses when too few descendant spikes occur, and de-
potentiates when too many occur. Spikes are time-weighted 
because effects of ancestor spikes on descendant neurons 
diminish according to their leak rates. Critical branching 
weight updates increase in likelihood as local branching 
ratio estimates diverge from one, and depend on spike 
timing. With regard to spike timing, excitatory synapses are 
more likely to be (de)potentiated when postsynaptic neurons 
have (not) fired recently, which helps to spread spikes 
across neurons. The same principle leads to the opposite 
rule for inhibitory neurons. 

 
Readout Layer. Readout units were not spiking units. 
Instead, the normalized exponential function (i.e. softmax) 
was used to compute their outputs from their summed 
inputs. The readout layer consisted of three normalized 
groups of units: 4 direction classification units (up, down, 
left, and right), 12 X-coordinate position units, and 12 Y-
coordinate position units. Unlike synapses projecting into 
reservoir units, connections into readout units were real-
valued and initialized in the range [-0.1, 0.1]. 

For each unit time interval of simulation, reservoir spikes 
resulted in normalized output activations over readout units. 
During training, readout units received 1-of-N targets for 
each of the three normalized readout groups. Targets were 
compared with outputs using the divergence error function, 
and the resulting error signal was used to update connection 
weights with the delta learning rule (using momentum = 0.5, 
learning rate = 0.00001). At testing, the maximally active 
readout unit in each group was compared with the targeted 
output to assess model accuracy (both X- and Y-coordinate 
units had to match their targets for location prediction to be 
considered accurate). Location prediction was always one 
unit time interval into the future. 
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Only weights on connections into readout units were 
trained. Levels of synaptic potentiation on connections into 
reservoir units were set by the critical branching tuning 
(given the diamond input patterns), and were not effected by 
readout units’ error signals. Thus, task-specific performance 
of readout units was based on generic, task-neutral spiking 
dynamics tuned near their critical branching point. 

Simulations 
Each simulation consisted of a set of tuning trials, and a set 
of trials used for both training and testing. Each trial began 
with the diamond-shaped input pattern initialized at a 
random location on the input grid (with periodic boundary 
conditions, as shown in Figure 2). Each trial proceeded for 
20 time intervals over which the diamond was moved for 20 
increments, each one corresponding to approximately one 
unit on the input grid. At each increment, input units 
corresponding to the position of the diamond were induced 
to spike, and other input units did not spike for that time 
interval.  

 
Figure 2: Diamond-shaped input pattern with periodic 

boundary conditions shown in gray. Arrows demonstrate 
straight-line (Simulation 1; blue), zig-zag (Simulation 2; 
red), and spiral (Simulation 3; orange) motion patterns 

 
Reservoir dynamics were not reset after each trial; the 

model ran continuously as spikes were input to the network 
trial after trial. There were a total of 1,000 tuning trials, 
followed by 1,000 training and testing trials. The critical 
branching tuning algorithm was engaged only during tuning 
trials, and readout units were engaged only during training 
and testing trials. Each simulation was run five times (with 
parameters initialized anew each time), and mean 
performance over the five runs is presented. Reservoir units 
successfully approached their critical branching point by the 
end of tuning (mean estimated branching ratio of .88; for 
related results on critical branching, see Kello et al., 2011).  

Simulation 1: Straight-Line Motion 
For Simulation 1, movement of the diamond-shaped input 
pattern on each trial was in a straight line in one of four 
randomly chosen directions (up, down, left, right). 
 
Results. Readout performance as a function of trial time 
interval is shown in Figure 3. At the beginning of each trial, 
results from both direction and location tasks are near 
chance performance because input spikes have not yet 

begun to perturb ongoing spiking activity. Performance on 
both tasks then gradually ramps up to asymptotic 
performance. This ramp-up shows that spiking dynamics, 
while not attractor-based, increasingly encode motion 
information as it consistently accumulates over successive 
inputs. The ramp-up in both results shows that the same, 
generic reservoir dynamics can be simultaneously tapped to 
compute different functions of motion.  
 

 
Figure 3: Accuracy on direction and location prediction 

tasks in Simulation 1 
 

Figure 3 also shows that direction classification was more 
difficult than location prediction. Given that both functions 
essentially coded the same information (i.e. 1-of-4 different 
directions and 1-of-4 future locations given the current 
location), we can conclude that this difference arises in part 
because the direction task requires generalization over 
position. Additionally, fewer weights encoded the direction 
function (4 versus 24 readout units). Further work is needed 
to pull these two factors apart. 

Simulation 2: Zig-Zag Motion 
The straight-line motion task in Simulation 1 required 
minimal integration of past information to achieve accurate 
performance. That is, it was sufficient to “remember” where 
the diamond was for any two or more of the previous time 
intervals. However, motion processing can be more 
difficult, in that information about the sequence of several 
past inputs may be required for accurate performance. In 
Simulation 2, a zig-zag motion pattern was used as a more 
stringent test of the memory capacity of reservoir dynamics.  

Each zig-zag trial began with the diamond-shaped input 
pattern initialized in a random start location. Motion again 
began in one of four randomly chosen directions (up, down, 
left, right), but here the direction of motion alternated by 
right angles at regular intervals to create a zig-zag pattern. 
The direction of the initial 90˚ turn was chosen randomly at 
the onset of each trial, and motion alternated between this 
and the original direction for the duration of the trial. The 
simulation was performed with inter-turn intervals (zig-zag 
lengths) ranging from 2 to 5. 

In order for readout units to achieve accurate 
performance, reservoir dynamics must now encode more 
specific information about inputs in the past. In particular, 
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reservoir dynamics must encode the time and direction of 
the previous zig-zag change, which may have occurred 
several time intervals in the past. 

 

 
Figure 4. Accuracy for direction and location prediction in 

Simulation 2 (dashed lines show changes in direction) 
 
Results. Results are shown in Figure 4. Performance in 
Simulation 2 was worse overall than in Simulation 1. This 
difference reflects the need for weights into readout units to 
extract more conjunctive information about past inputs. 
Notably, performance followed a zig-zag pattern aligned 
with the zig-zag of motion (direction changes shown by 
dotted lines). This pattern indicates that, as expected, 

predicting changes in direction was difficult because it 
required greater memory capacity. As motion continued 
linearly between each turn, performance gradually rose until 
it fell again at the next turn. 

The most important result was the overall increase in 
performance, which is best seen in zig-zag lengths 2 and 3. 
This trend indicates that reservoir dynamics accumulated 
information about the zig-zag pattern itself as inputs came in 
over time, and were more capable of anticipating the turns. 
This trend is rather small for length 4, and mostly absent 
from length 5. These results show limitations in the 
reservoir’s memory capacity as the length of time increased 
between turns that must be remembered. This generic 
memory capacity increases with the size of the reservoir, so 
these limitations are not absolute. It is an open question 
whether there may be other means of increasing memory 
capacity, either generically or for task-specific purposes. 
Finally, one can also see from Figure 4 that the relative 
performance of the two tasks differs from that observed in 
Simulation 1, especially with shorter zig-zag lengths. This 
result requires further investigation, but it presumably has to 
do with the position-general nature of direction coding, 
versus position-specific nature of location prediction. 

Simulation 3: Spiral Motion 
The zig-zag motions in Simulation 2 minimally required 
memory about only the last turn. In Simulation 3, an 
expanding spiral motion pattern was used to test whether 
reservoir dynamics can encode memory about all prior 
turns. On each trial, motion again began in one of four 
randomly chosen directions, and turns were either 90 
degrees clockwise or counter-clockwise, also chosen 
randomly. The sides of the spiral expanded over time in the 
sequence 1, 1, 2, 2, 3, 3, 4, and 4 (for a sum of 20 intervals; 
see Figure 2 for motion depiction). Simulation methods 
were otherwise the same. 
 

 
Figure 5. Accuracy on direction and location prediction in 

Simulation 3 (dashed lines show changes in direction) 
 

Results. Results are shown in Figure 5. As expected, overall 
performance on the spiral motion simulation was even 
worse than on the zig-zag motion, and performance dipped 
at each turn. However, performance once again showed a 
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slight upward trend over the entire trial interval, indicating 
that reservoir dynamics contained information about more 
than just one previous change in direction. 

Conclusion 
The present results are a proof-of-concept that generic, 
recurrent spiking dynamics have memory for visual inputs 
that can be tapped for motion processing tasks. Spike 
dynamics were tuned to their critical branching point, which 
has been shown to enhance the memory and computational 
capacity of reservoir spiking networks (Kello & Mayberry, 
2010). Furthermore, recordings from cortical slice 
preparations and EEG have provided evidence of critical 
branching neural activity (Poil et al., 2008). Thus, critical 
branching may be a basic principle utilized by motion 
processing microcircuits, as well as neural networks in 
general. Model results did not reach the level of accuracy 
necessary for simulating human motion processing 
capabilities, but the pattern of results showed that critical 
branching spiking dynamics are capable of the kinds of 
motion processing demonstrated in human behavior. 

Behavioral research has shown that an object’s motion is 
an important cue for object recognition (Newell et al., 
2004), and researchers are currently investigating the idea 
that the temporal contiguity of an object’s image on the 
retina contributes to the development of invariant object 
recognition (Li & DiCarlo, 2008). Because the recurrent 
dynamics of the model described here are shown to be 
capable of integrating information from multiple time steps, 
future work will investigate whether this memory can be 
tapped to form invariant object representations. 
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