
Visual Motion Perception using Critical Branching Neural Computation

Janelle K. Szary (jszary@ucmerced.edu)
Christopher T. Kello (ckello@ucmerced.edu)

Cognitive and Information Science, 5200 North Lake Rd., Merced, CA 95343 USA

Abstract

Motion processing in visual systems is supported by various
subcortical and cortical microcircuits. However, all motion
processing requires a basic capacity to integrate and combine
information over time, as may be true for all microcircuits
that support perceptual and cognitive functions. In the present
study, a generic microcircuit model is presented that self-
tunes its recurrent spiking dynamics to its critical branching
point. The model is shown to have generic memory capacity
that can be tapped for the purpose of visual motion
processing. These results suggest that critical branching
neural networks may provide general bases for spiking
models of motion processing and other perceptual and
cognitive functions.

Keywords: Critical branching; reservoir computing; leaky
integrate-and-fire neural networks; motion perception.

Introduction
Communication in neural networks largely occurs via
thresholded spiking signals between neurons, which are
connected by characteristically recurrent loops varying in
spatial and temporal scale (Buzsáki, 2006). This
connectivity structure produces patterns of network activity
that are continually in flux, and in this sense network
dynamics cannot be characterized by simple point or limit
cycle attractors. This limits the extent to which attractor-
based neural network models, common in cognitive science
(e.g. connectionist recurrent networks), can relate the
brain’s spiking dynamics with cognitive functions.

In order to investigate how computational functions might
be based in non-attractor network dynamics, Maass et al.
(2002b) and Jaeger (2001) developed the concept of
reservoir computing. The basic idea is that recurrent
networks can produce dynamics with a generic capacity for
computation, and so-called “read-out” networks can learn to
interpret reservoir dynamics for task-specific purposes.

The present work is focused on Maass et al.’s (2002b)
liquid state machine (LSM) framework, which consists of a
pool of leaky integrate-and-fire (LIF) units with random
recurrent connectivity that is roughly constrained to be local
and sparse. Time-varying input signals are fed to the
network to drive and alter the “liquid” spiking dynamics.
Due to recurrence, thresholding, and other non-linearities,
the resulting spatial and temporal spike patterns are
complex, unknown, and unlearned functions of their inputs.

Nonetheless, these spike patterns will contain information
about past inputs to the extent that their dynamics are not
overly convergent or overly divergent (i.e. with Lyapunov
exponents near one; Bertschinger & Natschläger, 2004).
Maass et al. (2002b) found that even when the input patterns

are non-linearly separable (e.g. XOR and parity), simple
linear classification can be used to categorize inputs based
on the liquid spike patterns they produce. Thus, simple
learning algorithms can be used to interpret complex spiking
dynamics for non-trivial functions and tasks. Moreover, the
authors showed that functions of past inputs can be learned
from current spike patterns because memory is an inherent
property of recurrent dynamics that are not overly
convergent or divergent.

The efficacy and simplicity of reservoir computing makes
it an attractive generic mechanism for computational
perception tasks. In fact, Verstraeten et al. (2005) used
LSMs to classify spoken words, and Maass et al. (2002a)
used them to classify the shapes and velocities of visual
objects in motion. Burgsteiner et al. (2006) used real-time
video footage from the RoboCup Soccer challenge to show
that an LSM could be used to predict the future location of a
soccer ball in motion.

Visual Motion Perception
Biological motion perception starts with motion detectors in
the retina, where ganglion cells just two or three synapses
away from rods and cones detect motion in preferred
directions (Vaney et al., 2000). Behaviorally, sensitivity to
the direction of motion is demonstrated in motion coherence
studies (reviewed in Braddick, 1997), where even minute
asymmetries in the percentage of motion in one or another
direction can be detected. Information about the direction of
motion is used for navigation, such as when coherent
motion across the visual field constitutes optic flow, and for
the detection of objects in motion, such as when local
motion differs from global motion (Srinivasan, 2000).

Tracking objects is another important function of motion
perception, i.e. the ability to predict future locations of
objects in motion. This kind of prediction is hypothesized to
be necessary for accurate smooth-pursuit eye movements
(Carpenter, 1988), and it enables organisms to either avoid
collisions with moving objects, or coincide with them as in
catching or hitting a baseball. For instance, McBeath (1990)
showed that the motor action of aiming and swinging a bat
must be implemented when the ball is just over halfway to
the plate, using a prediction of where the ball will be.
Similarly, studies of cricket batters’ eye movements show
predictive eye fixations on where the ball will be when it
crosses the mound, rather than where it currently is (Land &
McLeod, 2000).

The present work focuses on both of these functions of
motion processing: direction classification and future
location prediction. Reservoir computing techniques are
particularly well-suited for motion perception tasks, as both

1691

are inherently dynamical in nature. That is, microcircuits
involved in motion processing must support a wide range of
visual functions in the face of constantly changing inputs,
and must be sensitive to the time course of these inputs.

Critical Branching Applied to Motion Processing
In the present study, motion processing tasks are used to
investigate the efficacy of a generic circuit implemented
using the reservoir computing framework. The model builds
on previous work by Maass et al. (2002a) and Burgsteiner et
al. (2006) who developed LSMs for predicting future
locations of objects in motion. Here we replicate and extend
their work by 1) developing a new model for tuning
reservoir dynamics of LIF units, and 2) applying the model
to a wider range of tests that more thoroughly examine its
capacity for motion processing.

The present model is based on Kello and Mayberry’s
(2010) work on critical branching neural computation (see
also Kello & Kerster, 2011; Kello et al., 2011). The basic
idea is that the computational capacity of reservoir spiking
dynamics should be enhanced when near their critical
branching point. Any spiking neural network can be viewed
as a branching process whereby a spike occurring at time t
may subsequently “branch” into some number of spikes at
time t+Δt over the neurons connected via its axonal
synapses. Let us call the former an “ancestor” presynaptic
spike, and the latter “descendant” postsynaptic spikes. The
number of descendants divided by ancestors is the
branching ratio of a spiking network: σ=Npost/Npre. If σ<1,
spikes diminish over time and information transmission
through the network is inhibited by dampened propagation
of spiking signals. If σ>1, spikes increase over time and
eventually saturate the network, which also inhibits
information transmission. σ=1 is the critical branching point
at which spikes are conserved over time, and so propagate
without dying out or running rampant. A related concept of
“homeostatic synaptic scaling” is being investigated in
cortical circuits, and refers to the idea that these circuits also
adjust themselves to achieve a balanced level of overall
activity in terms of mean firing rate (for a review, see
Turrigiano, 2008).

Computational models verify the information processing
advantage of a network with σ=1. For example, an
analogous critical point between convergent and divergent
dynamics (i.e Lyapunov exponents near one) has been
shown to maximize memory capacity in a recurrent network
of threshold gating units (Bertschinger & Natschläger,
2004). Here we formulate a reservoir computing model
using LIF spiking neurons that are more biologically
realistic compared with threshold gate neurons. Our model
includes a simple algorithm that probabilistically potentiates
and de-potentiates synapses so that reservoir dynamics
approach their critical branching point.

We presented inputs to the model that come from a
simple, abstracted visual field. The visual field consisted of
nothing other than a diamond-shaped moving object on a
12x12 grid with periodic boundary conditions (i.e. left/right

and top/bottom edges wrap around). Inputs created and
perturbed ongoing spiking dynamics in a pool of LIF
reservoir neurons. A group of perceptron units was used to
“read out” spiking dynamics for two different functions of
motion processing: Direction classification and future
location prediction. These functions are similar, except that
direction classification requires generalization across
position (and has a higher chance rate of performance),
whereas future location prediction is position-specific (and
has a lower chance rate of performance).

In Simulation 1, we test whether critical branching
spiking dynamics have the kind of memory capacity capable
of simultaneously supporting these two motion processing
functions, using simple straight-line motions that require
only modest memory capacity for accurate performance. In
Simulations 2 and 3, we employ more complex zig-zag and
spiral motions that require greater memory capacity.

Reservoir Computing Model
Our model was based on the LSM framework, which
consists of three layers: input units, reservoir units (tuned to
critical branching, hereafter referred to as the “CB layer”),
and readout units (Figure 1). The input layer was a 12x12
grid, and each unit projected a synaptic connection onto
each of the reservoir units with probability 0.5. There were
400 LIF units in the CB layer, and each one projected
recurrently onto each other with probability 0.5. There were
four direction classification readout units, and twenty-four
location prediction readout units (representing two 12-unit
axis coordinates). Each unit in the CB layer projected onto
every readout unit. Input patterns were diamonds with sides
approximately 7-8 units in length.

Figure 1: Model architecture. Gray squares show example
spike patterns, and blue lines represent synaptic connectivity

Model Variables and Update Equations. LIF units
generally have the following variables (Roman letters) and
parameters (Greek letters): A membrane potential Vi for
each neuron i, a membrane threshold θi and membrane leak
λi, and a level of potentiation wj for each axonal synapse j,
where wj>=0 for excitatory neurons and wj<=0 for inhibitory
neurons. Models may also include variable synaptic delays
τj, as well as parameters governing the time course of action
potentials and postsynaptic potentials (e.g. membrane
resistance).

Our model included all of the above, except that action
potentials and postsynaptic potentials were instantaneous for
the sake of simplicity. We sought to enhance the

1692

biologically plausibility of the model with 1) variable
updates that were local in time and local with respect to
immediately connected synapses and neurons (numerical
values were not transmitted over connections among
neurons, as they are in e.g. backpropagation), and 2)
synaptic and neuronal updates were asynchronous and
event-based. The latter criterion helped further the
plausibility of our critical branching tuning algorithm.

Each update event in the model begins when a given
neuron receives as input a postsynaptic potential Ij at time t,
which may either come from another neuron within the CB
layer, or from the input layer:

, [1]
where denotes the instantaneous update of a variable,
and is the previous time that Vi was updated. Thus, the
model included continuous exponential leak, applied each
time a given neuron received an input. Immediately after
each Vi update, if Vi>θi, then Vi 0, and a postsynaptic
potential Ij was generated for each axonal synapse of i. Each
Ij=wj, and was applied at time t+τj.

In a typical connectionist model, wj can be any real-
valued number, possibly bounded by some minima and
maxima. However, neurophysiological evidence indicates
that synapses may only have a limited, discrete number of
levels of potentiation, possibly just two (Petersen et al.,
1998). Therefore we used binary-valued synapses in order to
limit the number of potentiated synapses (wj≠0), and to
enable a stochastic tuning algorithm. In particular, each
synapse had two possible strengths i.e. levels of
potentiation, 0 or φj. Each LIF model neuron has two free
parameters, λi and θi, and each synapse has two free
parameters, τj and φj. Values for all four free parameters
were sampled randomly from uniform distributions whose
ranges were set to reasonable default values. In particular,
values were real numbers in the ranges 1 < θi < 2, 0.5 < λi <
1, 1 < τj < 1.5, 1 < φj < 2 for excitatory units, and 0.1 < φj <
1 for inhibitory units. The decision to set φj higher for
excitatory units was driven by performance considerations,
rather than neurophysiological data.

The set of membrane potentials V and postsynaptic
potentials I comprise the dynamics of neurons in our LIF
model. These variables are governed by event-based updates
(Eq 1, plus threshold dynamics) that may occur
asynchronously across neurons (at any point in continuous
time, simulated with arbitrary precision). The set of synaptic
weights w comprise the dynamics of synapses, and are
governed by the critical branching algorithm described next.

Self-Tuning Algorithm. The objective of the self-tuning
algorithm is to potentiate and de-potentiate synapses so that
each ancestor spike is followed by one descendant spike on
average. A local estimate for σ is computed over the
interspike interval (ISI) for each model neuron i. This means
that only Npost,i need be estimated, because Npre,i=1 by
definition, with respect to a given neuron’s ISI. Thus, to
achieve critical branching, Npost,i should sum to one.

When a given neuron spikes, its local estimate of σ is
reset, Npost,i 0. For each axonal synapse’s first spike
occurring at time t, Npost,i was incremented by .
For each increment, each descendant spike was weighted as
a decaying function of the time interval between pre- and
postsynaptic spikes, with maximal weighting when the
former was immediately followed by the latter.

The sum of time-weighted descendants is used (before it
is reset to zero) each time the neuron spikes to update
weights on its axonal synapses. In particular, if Npost,i<1,
then the update wj φj is performed for each synapse j with
probability

, [2]
where η is a global tuning rate parameter (fixed at 0.1), and
U is the number of synapses available for potentiation.
f(si) if neuron i was excitatory, and
f(si) if inhibitory. If Npost,i>1, then perform the
update wj 0 with probability set according to Eq 2, except
U is the number of synapses available for de-potentiation,
and the assignment of f(si) is switched for excitatory versus
inhibitory neurons.

In essence, the critical branching algorithm potentiates
synapses when too few descendant spikes occur, and de-
potentiates when too many occur. Spikes are time-weighted
because effects of ancestor spikes on descendant neurons
diminish according to their leak rates. Critical branching
weight updates increase in likelihood as local branching
ratio estimates diverge from one, and depend on spike
timing. With regard to spike timing, excitatory synapses are
more likely to be (de)potentiated when postsynaptic neurons
have (not) fired recently, which helps to spread spikes
across neurons. The same principle leads to the opposite
rule for inhibitory neurons.

Readout Layer. Readout units were not spiking units.
Instead, the normalized exponential function (i.e. softmax)
was used to compute their outputs from their summed
inputs. The readout layer consisted of three normalized
groups of units: 4 direction classification units (up, down,
left, and right), 12 X-coordinate position units, and 12 Y-
coordinate position units. Unlike synapses projecting into
reservoir units, connections into readout units were real-
valued and initialized in the range [-0.1, 0.1].

For each unit time interval of simulation, reservoir spikes
resulted in normalized output activations over readout units.
During training, readout units received 1-of-N targets for
each of the three normalized readout groups. Targets were
compared with outputs using the divergence error function,
and the resulting error signal was used to update connection
weights with the delta learning rule (using momentum = 0.5,
learning rate = 0.00001). At testing, the maximally active
readout unit in each group was compared with the targeted
output to assess model accuracy (both X- and Y-coordinate
units had to match their targets for location prediction to be
considered accurate). Location prediction was always one
unit time interval into the future.

1693

Only weights on connections into readout units were
trained. Levels of synaptic potentiation on connections into
reservoir units were set by the critical branching tuning
(given the diamond input patterns), and were not effected by
readout units’ error signals. Thus, task-specific performance
of readout units was based on generic, task-neutral spiking
dynamics tuned near their critical branching point.

Simulations
Each simulation consisted of a set of tuning trials, and a set
of trials used for both training and testing. Each trial began
with the diamond-shaped input pattern initialized at a
random location on the input grid (with periodic boundary
conditions, as shown in Figure 2). Each trial proceeded for
20 time intervals over which the diamond was moved for 20
increments, each one corresponding to approximately one
unit on the input grid. At each increment, input units
corresponding to the position of the diamond were induced
to spike, and other input units did not spike for that time
interval.

Figure 2: Diamond-shaped input pattern with periodic

boundary conditions shown in gray. Arrows demonstrate
straight-line (Simulation 1; blue), zig-zag (Simulation 2;
red), and spiral (Simulation 3; orange) motion patterns

Reservoir dynamics were not reset after each trial; the

model ran continuously as spikes were input to the network
trial after trial. There were a total of 1,000 tuning trials,
followed by 1,000 training and testing trials. The critical
branching tuning algorithm was engaged only during tuning
trials, and readout units were engaged only during training
and testing trials. Each simulation was run five times (with
parameters initialized anew each time), and mean
performance over the five runs is presented. Reservoir units
successfully approached their critical branching point by the
end of tuning (mean estimated branching ratio of .88; for
related results on critical branching, see Kello et al., 2011).

Simulation 1: Straight-Line Motion
For Simulation 1, movement of the diamond-shaped input
pattern on each trial was in a straight line in one of four
randomly chosen directions (up, down, left, right).

Results. Readout performance as a function of trial time
interval is shown in Figure 3. At the beginning of each trial,
results from both direction and location tasks are near
chance performance because input spikes have not yet

begun to perturb ongoing spiking activity. Performance on
both tasks then gradually ramps up to asymptotic
performance. This ramp-up shows that spiking dynamics,
while not attractor-based, increasingly encode motion
information as it consistently accumulates over successive
inputs. The ramp-up in both results shows that the same,
generic reservoir dynamics can be simultaneously tapped to
compute different functions of motion.

Figure 3: Accuracy on direction and location prediction

tasks in Simulation 1

Figure 3 also shows that direction classification was more
difficult than location prediction. Given that both functions
essentially coded the same information (i.e. 1-of-4 different
directions and 1-of-4 future locations given the current
location), we can conclude that this difference arises in part
because the direction task requires generalization over
position. Additionally, fewer weights encoded the direction
function (4 versus 24 readout units). Further work is needed
to pull these two factors apart.

Simulation 2: Zig-Zag Motion
The straight-line motion task in Simulation 1 required
minimal integration of past information to achieve accurate
performance. That is, it was sufficient to “remember” where
the diamond was for any two or more of the previous time
intervals. However, motion processing can be more
difficult, in that information about the sequence of several
past inputs may be required for accurate performance. In
Simulation 2, a zig-zag motion pattern was used as a more
stringent test of the memory capacity of reservoir dynamics.

Each zig-zag trial began with the diamond-shaped input
pattern initialized in a random start location. Motion again
began in one of four randomly chosen directions (up, down,
left, right), but here the direction of motion alternated by
right angles at regular intervals to create a zig-zag pattern.
The direction of the initial 90˚ turn was chosen randomly at
the onset of each trial, and motion alternated between this
and the original direction for the duration of the trial. The
simulation was performed with inter-turn intervals (zig-zag
lengths) ranging from 2 to 5.

In order for readout units to achieve accurate
performance, reservoir dynamics must now encode more
specific information about inputs in the past. In particular,

1694

reservoir dynamics must encode the time and direction of
the previous zig-zag change, which may have occurred
several time intervals in the past.

Figure 4. Accuracy for direction and location prediction in

Simulation 2 (dashed lines show changes in direction)

Results. Results are shown in Figure 4. Performance in
Simulation 2 was worse overall than in Simulation 1. This
difference reflects the need for weights into readout units to
extract more conjunctive information about past inputs.
Notably, performance followed a zig-zag pattern aligned
with the zig-zag of motion (direction changes shown by
dotted lines). This pattern indicates that, as expected,

predicting changes in direction was difficult because it
required greater memory capacity. As motion continued
linearly between each turn, performance gradually rose until
it fell again at the next turn.

The most important result was the overall increase in
performance, which is best seen in zig-zag lengths 2 and 3.
This trend indicates that reservoir dynamics accumulated
information about the zig-zag pattern itself as inputs came in
over time, and were more capable of anticipating the turns.
This trend is rather small for length 4, and mostly absent
from length 5. These results show limitations in the
reservoir’s memory capacity as the length of time increased
between turns that must be remembered. This generic
memory capacity increases with the size of the reservoir, so
these limitations are not absolute. It is an open question
whether there may be other means of increasing memory
capacity, either generically or for task-specific purposes.
Finally, one can also see from Figure 4 that the relative
performance of the two tasks differs from that observed in
Simulation 1, especially with shorter zig-zag lengths. This
result requires further investigation, but it presumably has to
do with the position-general nature of direction coding,
versus position-specific nature of location prediction.

Simulation 3: Spiral Motion
The zig-zag motions in Simulation 2 minimally required
memory about only the last turn. In Simulation 3, an
expanding spiral motion pattern was used to test whether
reservoir dynamics can encode memory about all prior
turns. On each trial, motion again began in one of four
randomly chosen directions, and turns were either 90
degrees clockwise or counter-clockwise, also chosen
randomly. The sides of the spiral expanded over time in the
sequence 1, 1, 2, 2, 3, 3, 4, and 4 (for a sum of 20 intervals;
see Figure 2 for motion depiction). Simulation methods
were otherwise the same.

Figure 5. Accuracy on direction and location prediction in

Simulation 3 (dashed lines show changes in direction)

Results. Results are shown in Figure 5. As expected, overall
performance on the spiral motion simulation was even
worse than on the zig-zag motion, and performance dipped
at each turn. However, performance once again showed a

1695

slight upward trend over the entire trial interval, indicating
that reservoir dynamics contained information about more
than just one previous change in direction.

Conclusion
The present results are a proof-of-concept that generic,
recurrent spiking dynamics have memory for visual inputs
that can be tapped for motion processing tasks. Spike
dynamics were tuned to their critical branching point, which
has been shown to enhance the memory and computational
capacity of reservoir spiking networks (Kello & Mayberry,
2010). Furthermore, recordings from cortical slice
preparations and EEG have provided evidence of critical
branching neural activity (Poil et al., 2008). Thus, critical
branching may be a basic principle utilized by motion
processing microcircuits, as well as neural networks in
general. Model results did not reach the level of accuracy
necessary for simulating human motion processing
capabilities, but the pattern of results showed that critical
branching spiking dynamics are capable of the kinds of
motion processing demonstrated in human behavior.

Behavioral research has shown that an object’s motion is
an important cue for object recognition (Newell et al.,
2004), and researchers are currently investigating the idea
that the temporal contiguity of an object’s image on the
retina contributes to the development of invariant object
recognition (Li & DiCarlo, 2008). Because the recurrent
dynamics of the model described here are shown to be
capable of integrating information from multiple time steps,
future work will investigate whether this memory can be
tapped to form invariant object representations.

Acknowledgements
This work was funded by a DARPA contract to IBM, and a
University of California, Merced, Faculty Mentor Program
Fellowship award. The authors would like to thank
reviewers for helpful comments and suggestions.

References
Bertschinger, N., & Natschläger, T. (2004). Real-time

computation at the edge of chaos in recurrent neural
networks. Neural Computation, 16(7), 1413-1436.

Braddick, O. (1997). Local and global representations of
velocity: Transparency, opponency, and global direction
perception. Perception, 26, 995-1010.

Burgsteiner, H., Kröll, M., Leopold, A., & Steinbauer, G.
(2006). Movement prediction from real-world images
using a liquid state machine. Applied Intelligence, 26(2),
99-109.

Buzsáki, G. (2006). Rhythms of the Brain. New York:
Oxford University Press.

Carpenter, R. H. S. (1988). Movements of the eyes, 2nd ed.
London: Pion Press.

Jaeger, H. (2001). The “echo state” approach to analyzing
and training recurrent neural networks. GMD Report

148, GMD – German National Research Institute for
Computer Science.

Kello, C. T., & Kerster, B. (2011). Power laws, memory
capacity, and self-tuned critical branching in an LIF
model with binary synapses. Proceedings of
Computational and Systems Neuroscience 2011. Salt
Lake City, UT.

Kello, C. T., Kerster, B., & Johnson, E. (2011). Critical
branching neural computation, neural avalanches, and 1/f
scaling. To appear in Proceedings of the 33rd Annual
Cognitive Science Society Conference. Boston, MA.

Kello, C. T., & Mayberry, M. (2010). Critical branching
neural computation. IEEE World Congress on
Computational Intelligence (pp. 1475-1481). Barcelona,
Spain.

Land, M. F., & McLeod, P. (2000). From eye movements to
actions: How batsmen hit the ball. Nature Neuroscience,
3, 1340-1345.

Li, N., & DiCarlo, J. (2008). Unsupervised natural
experience rapidly alters invariant object representations
in visual cortex. Science, 321, 1502-1507.

Maass, W., Legenstein, R., & Markram, H. (2002a). A new
approach towards vision suggested by biologically
realistic neural microcircuit models. Lecture Notes in
Computer Science, 2525/2002, 282-293.

Maass, W., Natschläger, T., & Markram, H. (2002b). Real-
time computing without stable states: A new framework
for neural computation based on perturbations. Neural
Computation, 14(11), 2531-2560.

McBeath, M. K. (1990). The rising fastball: Baseball’s
impossible pitch. Perception, 19, 545-552.

Newell, F. N., Wallraven, C., & Huber, S. (2004). The role
of characteristic motion in object categorization. Journal
of Vision, 4(2), 118-129.

Petersen, C. C. H., Malenka, R. C., Nicoll, R. A., &
Hopfield, J. J. (1998). All-or-none potentiation at CA3-
CA1 synapses. Proceedgins of the National Academy of
Sciences of the United States of America, 95, 4732-4737.

Poil, S.-S., van Ooyen, A., & Linkenkaer-Hansen, K.
(2008). Avalanche dynamics of human brain oscillations:
Relation to critical branching processes and temporal
correlations. Human Brain Mapping, 29, 770-777.

Srinivasan, M. V. (2000). Visual navigation: The eyes know
where their owner is going. In J. M. Zanker & J. Zeil
(Eds.), Motion vision: Computational, neural, and
ecological constraints. Berlin: Springer.

Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic
Scaling of Excitatory Synapses. Cell, 135, 422-435.

Vaney, D. I., He, S., Taylor, W. R., Levick, W. R. (2000).
Direction-selective ganglion cells in the retina. In J. M.
Zanker & J. Zeil (Eds.), Motion vision: Computational,
neural, and ecological constraints. Berlin: Springer.

Verstraeten, D., Schrauwen, B., Stroobandt, D., & Van
Campenhout J. (2005). Isolated word recognition with the
Liquid State Machine: A case study. Information
Processing Letters, 95, 521-528.

1696

