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Abstract 

How is semantic memory structured and searched? Recalling 
items from semantic categories is a classic assay of semantic 

memory, and recall dynamics tend to exhibit semantic and 
temporal clustering, as if memory items are organized and 
retrieved in clusters. Recent analyses show this clustering to 

be approximately scale-free in terms of distributions of inter-
response intervals (IRIs). This finding is replicated and 
extended in the present study by asking participants to type as 

many animals as they can recall from semantic memory. To 
begin to explain these results, the organization of semantic 
memory is modeled as a network based on Wikipedia entries  

for nearly 6,000 animals. The Wikipedia animal network is 
found to be scale-free in terms of its degree distribution, and 
aspects of the network are found to correlate with aspects of 

recall. Semantic similarity based on Wikipedia entries is  
found to compare favorably with a measure based on latent 
semantic analysis. It is concluded that semantic memory 

processes can be usefully theorized as searches over scale-
free networks. 

Keywords: semantic memory, scale-free networks, Lévy 

foraging; category recall; latent semantic analysis; Wikipedia  

Introduction 

Category recall is a classic approach to investigating 

semantic memory. Participants produce as many items from 

a semantic category as possible in a specified period of time  

(Bousfield & Sedgewick, 1944). Items tend to be recalled in 

clusters. For the category of “animals”, for instance, part of 

a typical sequence might be “lion, tiger, cougar, leopard… 

kitten, cat, tabby”. This sequence contains two groups of 

semantically similar items, big wild cats followed by house 

cats. Such clusters can be of varying kinds and sizes, and 

they tend to correspond with short IRIs, relat ive to longer 

pauses when switching from one cluster to the next 

(Grunewald, Lockhead & Gregory, 1980).  

Clustering seems to be a general feature of semantic 

memory. Work in this area has a long history, with early 

experiments showing that, when participants memorize  

words presented in random order, they tend to recall those 

words in clusters based on semantic categories (Bousfield & 

Sedgewick, 1953). Therefore c lustering must be related to 

memory encoding, retrieval, or both. In clinical work, 

semantic category recall is used as a diagnostic for mental 

disorders. Schizophrenic patients , people with semantic 

dementia and people with Alzheimer’s  all show specific 

deficits in category generation tasks (see Murphy, Rich & 

Troyer, 2006).  

Previous work has sought to account for clustering in 

category recall with patch foraging models (see Hills, Jones 

& Todd, 2012). Patch foraging theorizes semantic memory  

as a set of patches of similar items. Memory search consists 

of series of quick retrievals of items from with in a patch, 

interleaved by longer times switching to the next patch 

when a sufficient number of items in the current patch have 

been found. Framed this way, optimal foraging can be 

expressed in terms of the time to leave a patch. It is optimal 

to switch when the instantaneous rate of recall per unit time 

drops below the long-term expected rate of recall 

(Charnov,1976). Category switch times, and times in other 

human search tasks, have been found to be consistent with 

patch foraging (Cain, Vul & Mitroff, 2012). 

Patch foraging models put little, if any, theoretical weight 

on the distribution of patch sizes, given that only their mean 

size is needed to compute the expected rate of recall (along 

with basic assumptions about retrieval times). That said, 

recent work on category generation tasks has examined IRIs 

in more depth (Rhodes & Turvey, 2007). When the category 

recall task was of sufficient length (e.g. ten to twenty 

minutes for recalling animals), IRIs were found to be power 

law distributed, where the frequency of an IRI was an 

inverse power of its size, P(IRI) ~ 1/IRI
α
. Ideally, this 

distribution has no characteristic scale, in which case the 

mean and variance diverge as more samples are drawn from 

the distribution. The implication is that patches in memory  

also have no characteristic size, instead coming in a wide 

range of sizes, with the probability of observing ever larger 

patches increasing steadily over time.  

Power law IRI distributions fall outside the purview of 

patch foraging models, but they have been studied 

extensively in animal foraging models (Viswanathan et al., 

1996). Unlike patch models, an imal fo raging models 

explicit ly consider the space in which items  are to be found, 

such as trees and bushes in a meadow where birds are 

foraging for nuts and berries. Interestingly, the same power 

law d istribution found in category recall is also found in 

inter-retrieval intervals during foraging for a wide range of 

species (Sims, Southall & Humphries, 2003). Theorists have 

related these findings to so-called Lévy walks (Mandelbrot, 

1982), which are random walks with path lengths drawn 

from a power law distribution. While it is unlikely that 

foraging paths are literally random Lévy walks, they may 

capture an important property of foraging. The reason is that 

Lévy walks may be optimal search strategies when their 



exponent α ~ 2, and items are sparsely distributed 

(Viswanathan et al., 2000). Consistent with optimal Lévy 

walks, inter-retrieval intervals in animal foraging, as well as 

IRIs in category recall, have all been found to be distributed 

like a power law with the predicted exponent value (Rhodes 

& Turvey, 2007; Sims, Southall & Humphries, 2003).  

What do these findings tell us about the process of 

searching semantic memory in category recall? They 

suggest that simple Lévy walks might characterize much 

about memory search, but they also might tell us about the 

structure of semantic memory. Items in memory are often 

theorized in terms of networks, in which case one is led to 

ask whether these networks are structured in such a way that 

searching them results in power law IRIs. As it turns out, 

recent work on semantic networks shows their degree 

distributions might be scale-free, i.e. follow a power law 

distribution (Steyvers & Tenebaum, 2005).  

A network consists of a interconnected nodes, and the 

degree of a node is its number of connections. Scale-free 

networks are those whose distributions of node degrees 

follow an inverse power law. Many natural and manmade 

networks are scale-free, such as power grids, brain networks 

and the World Wide Web (Strogatz, 2001). Steyvers and 

Tenenbaum (2005) analyzed three different types of data as 

reflections of semantic networks: word associations, 

WordNet entries (Miller, 1995) and Roget’s Thesaurus . In 

all three cases, data were used to link items in a network 

based on similarity or associative relat ions, and in all cases 

networks were scale -free.  

This evidence for scale-free networks suggests that items 

fall into clusters with no characteristic size, analogous to the 

link drawn from power law IRI distributions to patches with 

no characteristic size. This analogy suggests that a scale-free 

semantic network might account for power law IRI 

distributions, as well as the semantic clustering of items in 

category recall tasks. In the present study, we collect data in 

a category recall task and test whether observed clusters of 

recalled items, and associated IRIs, can be exp lained by a 

model of semantic memory.  

We draw and expand upon previous studies as follows. 

Category recall data are collected via typed instead of 

spoken responses, as in previous studies. This difference 

allows us to test whether previous findings replicate when 

response dynamics are on the order of seconds (typing) 

instead of milliseconds (speech). Typing also allows us to 

test whether the same power law distribution occurs in IRIs, 

as well within responses (typing durations). If so, we would  

have evidence that recall processes unfold continuously 

throughout the task, rather than in  alternating stages of 

recall and response execution (Kawamoto, Kello & Jones, 

1998; Sp ivey & Dale, 2006). 

We then build a semantic network of animals using over 

6000 pages from Wikipedia. We follow an informat ion 

theoretic method used previously to show that the entirety 

of Wikipedia can be formalized as a scale-free network 

(Massuci et al., 2012). We test whether this method 

replicates when analyzing only one subset domain of 

Wikipedia, and we test whether the resulting measures of 

animal similarity and network structure can be used to 

explain an online behavioral measure, i.e. category recall 

data in this case. We also compare Wikipedia measures of 

semantic similarity with those generated from latent 

semantic analysis (LSA) of linguistic corpora (Landauer & 

Dumais, 1997). LSA has become a standard co-occurrence 

method, whereas Wikipedia is new encyclopedic method. 

We end by discussing the implications of results for Lévy 

and patch foraging models, semantic memory, and search 

processes in general. 

Experiment 

Methods 

Participants and Procedure. Nineteen undergraduates at 

University of Californ ia, Merced participated for course 

credit. Part icipants were instructed to recall as many 

members from the category of “animals” as they could in 

twenty minutes, after first complet ing three minutes of 

practice with naming colors . Responses were typed and 

recorded using a Flash interface that stored the timing of 

each key press. Key press times were used to calculate the 

intervals from the end of one response to the start of the 

next, termed inter-response time (IRT), and the time from 

start to end of respond, termed typing duration.  
 

Results 

The average number of animals produced by each 

participant was 117 (SD = 38.6). Distributions of IRIs and 

typing durations were plotted in logarithmic coordinates to 

gauge whether they resembled power law distributions. As 

shown in Figure 1, the negative linear relation is indicat ive 

of a power law, and multi-model inference tests (Akaike, 

1974) confirmed that 4 subjects were best fit by a power 

law, and the other 15 were best fit by a lognormal (which is 

akin to a constrained or truncated power law in this case). 

The deviations from linear at left end of these distributions 

were due to minima that constrained and thereby distorted 

the power law relat ionship. Distortion aside, the slope of 

these distributions in logarithmic coordinates was near -2, 

which rep licates the category recall findings of Rhodes and 

Turvey (2007). Thus memory retrieval dynamics fo llowed 

the same pattern for slower typed responses, relative to 

faster spoken responses.  

Typing durations also followed the same power law 

relation, suggesting that memory retrieval is ongoing during 

response execution. To test whether this result may have 

been due to variations in response length, typing durations 

were normalized by the number of letters in each response. 

As shown in Figure 1, normalized distributions had the 

same overall shape as the others. Thus response length did 

not factor into the results.  

In addition to IRIs, the category recall task also yields 

series of recalled animals. Visual inspection of these series 

indicated that, as expected, semantically related animals 



tended to be recalled in close proximity compared with less 

related animals. Next we describe the Wikipedia semantic 

network model and test whether it can account for the 

relative positioning and clustering of items in recall 

sequences.  

 

 
Figure 1. Response histograms in logarithmic coordinates. 

Semantic Memory Modeling 

The network method developed by Masucci et al. (2011) 

is based on transforming each given Wiki page into a 

probability distribution over lemmas, and then using Jenson-

Shannon divergence (JSD) to measure the distance between 

two probability distributions. Animal Wiki pages were 

found using the Dbpedia ontology (Auer, Bizer & 

Kobilarov, 2007) which contains a list of all articles in 

Wikipedia associated with a given tag. A list of 129,027 

animal articles in Wikipedia was compiled and all stub 

articles, red irect pages and articles with under 500 words of 

main text were removed, leaving 5,701 an imal pages . 

Formatting, references, and function words were removed, 

and remaining words were lemmatized to collapse across 

different inflectional forms.  

The resulting frequency counts over lemmas on each page 

were normalized to create probability distributions, and each 

distribution served as a semantic representation of the 

corresponding animal. These representations can be used to 

determine which animals are and are not linked in a 

semantic network, provided there is a good measure of 

similarity between probability distributions. Note that two 

distributions for two given pages may only partially overlap 

in their corresponding sets of lemmas, which means that a 

similarity measure must encompass and normalize over 

varying degrees of overlap. 

A well-known measure of similarity between two 

probability distributions is the Kullback-Liebler (KL) 

divergence, defined as 

 
This divergence is asymmetric and non-normalized, whereas 

JSD is a symmetric extension of KL divergence, normalized 

between zero and one: 

 
 

JSD can be thought of as providing a measure of how much 

the same lemmas are used with the same frequency between 

two Wiki pages.  

Semantic Network. JSDs were calculated for all pairs of 

probability distributions, and an undirected semantic 

network was created by connecting any two animals with a 

JSD similarity below a given threshold. The threshold was 

chosen to be just high enough to merge 90% of the animals 

into a single, interconnected network (every node could be 

reached from every other node by traversing the network, 

and unconnected nodes were removed from analysis). 

  

 
 

Figure 2. Degree d istribution of the Wikipedia semantic 

network in logarithmic coordinates . 

 

The structure of the resulting network was sparse, small-

world and approximately scale-free. Average minimum path 

length was 3.65, average clustering coefficient was 0.529, 

the diameter of the network was 14 and the degree 

distribution followed a power law distribution (Figure 2). 

This finding replicates Masucci et al. (2011) for a subset of 

Wikipedia, and it provides convergent evidence with  

Steyvers & Tenenbaum (2005) that semantic memory can 

be expressed as a scale-free network.  

Accounting for Category Recall Results 

Semantic networks are often compared with offline 

human behaviors that can be expressed as structures. 

Wikipedia provides crystallized, idealized representations of 

animals, but it stands to reason that online measures of 

human behavior would be sensitive to these representations. 

We examine three such measures from our category recall 

data: 1) Animal response similarity as a function of distance 

in recall sequences, 2) First-order transitions in recall 

sequences, and 3) IRIs as a function of shortest path length 

in the scale-free semantic network.  

To provide a benchmark for these three measures, we also 

computed semantic similarity using LSA, which has become 

a standard correlate of lexical semantic representation. As a 

co-occurrence method, LSA has strengths and weaknesses 



compared with our W ikipedia-based method. Its main  

strength is that LSA can provide a representation for every 

word in a set of documents, whereas the Wikipedia method 

can only provide representations for existing entries. 

However, each entry unambiguously corresponds to a 

particular semantic item, whereas LSA merges all the 

different meanings and usages of each given word, like 

“fish”, into a single semantic representation. LSA word  

vectors cannot be combined to form compound 

representations that correspond to animals like “fly ing fish” 

and “zebra finch”.  

 Responses were corrected for spelling mistakes , mult i-

word responses like “black bear” were reduced to their 

superordinate category, i.e. "bear" in this case. LSA vectors 

were calcu lated using a term by term comparison from the 

general reading to first year college corpus with 300 factors 

from the LSA website. Of the 827 unique items produced in 

the category recall experiment, we were ab le to compute 

196 animal LSA vectors, and 293 Wiki probability 

distributions.  

 

 
 

 
 

Figure 3. Mean JSD and LSA measures as a function of 

relative positions, with standard error bars.  

 

Recall Proximity. The first measure we examine is 

related to evidence marshaled for patch foraging models. 

Hills et al. (2012) used a co-occurrence method called 

BEAGLE (Jones & Mewhort, 2007) to show that items 

produced within a patch are more semantically related as a 

function of proximity in a sequence. Given the evidence for 

patches of all sizes, and hierarch ical nesting of patches as 

evidenced by power laws, we tested whether the analysis 

could be extended to all items in category recall sequences, 

without setting patch boundaries. 

JSD and LSA measures were computed between pairs of 

animal responses in category recall sequences, as a function 

of the relative position of items, from 1 (ad jacent) to 10 

(nine intervening items). JSD and LSA measures of 

semantic similarity were averaged for each relative position, 

and then normalized by the mean and standard deviation for 

all pairwise JSD and LSA similarities, across all relat ive 

positions. Results are shown in Figure 3.  

The JSD and LSA measures produced comparable results 

showing that semantic similarity decreased as a function of 

positional distance in sequences. This result confirms visual 

inspection of sequences, as well as previous research 

(Bousfield & Sedgewick, 1953) showing that similar items 

are recalled in nearby positions. Both measures also 

compared favorably with the Hills et al. (2012) results, 

which showed a distinct effect of similarity only for 

immediately adjacent items in recall sequences. Quantitative 

differences between LSA and Wikipedia methods were also 

observed: Compared with Wikipedia, LSA registered 

relatively higher similarit ies for immediately adjacent items, 

but similarity fell off more quickly with increasing distance.  

For each recalled item, all animals that could be recalled  

next were arranged according to the JSD or LSA similarity 

between them, creating a ranking of possible transitions. 

Transitions to every ranking were normalized by the sum of 

all JSD or LSA transitions. Probabilities were then divided 

by random chance for each analysis (1/293 and 1/196, 

respectively), to show proportion above or below chance.  

Transitional Probabilities. LSA and JSD measures used 

in the recall proximity analysis can serve as a basis for 

predicting performance in category recall, but additional 

mechanis ms would be needed to fully simulate recall 

sequences. As a start, we used LSA and JSD measures to 

compute first-order transition probabilities as a simple 

means of predict ing each recall item in a sequence, based 

only on the previous item. This analysis extends the 

previous one because each transitional probability is 

computed relative to all possible recall items, which is 

probably more akin to a model of category recall that 

simulated dynamics of semantic memory, e.g. by as 

traversing a scale-free semantic network.  

As shown in Figure 4, fo r both JSD and LSA measures, 

participants transitioned to the most similar items with a 

higher probability. JSD transitions to the highest ranked 

word made up around 7% of total transitions, and for LSA it 

was around 3%. This effect falls off after the first 30-50 

most similar items, and is most pronounced for the JSD 



measure. Therefore the JSD measure appears to be better at 

predicting transitional probabilities compared with the LSA 

method.  

 

 
Figure 4. Standardized probability of first-order 

transitions between items by similarity ranking for JSD and 

LSA measures. 

 

Accounting for IRIs. The previous two analyses focused 

on the sequencing of recalled items, but the times between 

recalls are arguably more at issue in theories of semantic 

memory. Both patch and Lévy foraging theories aim to 

explain IRI effects—patch transition times for the former, 

and IRI distributions for the latter. We tried using JSD and 

LSA similarities alone, as in the previous two analyses, to 

account for IRIs. However, they did not correlate reliably  

with IRIs under any transformation of the data we tried.  

Despite the lack of a direct link between semantic 

similarities and IRIs, a semantic network bu ilt from 

similarities still may account for IRIs by virtue of network 

structure and dynamics that capture interactions among 

items in memory. We used the scale-free semantic network 

reported earlier, based on Wikipedia JSDs, to account for 

IRIs observed in our category recall experiment. We did not 

build a network based on LSA values because the lack of 

semantic representations for word phrases like “tiger shark” 

prohibited us from creating a sufficiently rich network. 

Simulating network dynamics is beyond the present 

scope, but we accounted for IRIs using a standard measure 

of network structure that is likely to have a strong influence 

on network dynamics. Min imum path length is the 

minimum number of links needed to traverse from one node 

to another. Minimum path length provides a measure of how 

disparate two nodes are in the context of an interconnected 

network, and will direct ly impact any walker or spreading 

activation mechanis m used to formulate network dynamics .  

 

 
Figure 5. Mean logged IRI between words with different    

minimum path length separation in the semantic network.  

 

Minimum path lengths were computed between all 

adjacently recalled items in all sequences from the category 

recall experiment. Min ima ranged from 1 to 6, but we only  

examined pairs from 1 to 4 because there were too few at 5 

and 6 to afford analysis. IRIs were logarithmically  

transformed due to their heavy tails (as reported earlier), and 

mean log IRIs were computed for each minimum path 

length, as shown in Figure 5. There was a significant effect 

of path length on log IRIs, = .403, t(1067) = 7.44, p < 

.001, and they accounted for a significant proportion of 

variance R
2
 = .049, F(1, 1067) = 55.36, p < .001. IRIs were 

shorter for immediately connected items compared to the 

baseline mean IRI, and IRIs were progressively greater than 

baseline as path length increased from 2 to 4. This result 

provides evidence that a scale-free semantic network may 

account for IRIs in category recall experiments, even when 

semantic similarities alone are not enough to account for the 

data. 

Discussion 

In the present study, we provided initial evidence that 

category recall performance can be modeled using scale-free 

semantic networks. The category recall data were from 

series of typed responses, but IRI distributions had the same 

shape as in previous experiments using spoken responses . 

This replication indicates  that the present analyses should 

generalize. Typed responses also indicated that memory  

dynamics unfold during response execution as well as the 

pauses between responses, which will be important to 

account for in future models and simulations. 

Previous studies have provided behavioral evidence that 

semantic memory is organized as a scale-free network 

(Steyvers & Tenenbaum, 2005), and we showed that a 

semantic network of an imals built from Wikipedia pages is 



indeed scale-free. We used a measure of Wikipedia page 

similarity to account for basic aspects of recall sequences, 

and we showed that this measure of similarity compared 

favorably with a more standard LSA measure. We also 

showed that a basic aspect of scale-free network structure 

explained some of the variance in category recall IRIs.  

The next step in this line of work is to implement network 

dynamics to test whether scale-free network structure can 

account for the scale-free, power law distribution of IRIs 

observed in category recall tasks. This test will bear on 

Lévy forag ing theories that would explain power law IRIs in  

terms of random or correlated walkers. A parallel step will 

be to test whether network dynamics can account for 

evidence suggesting that foragers spend optimal amounts of 

time foraging within patches, and switch to new patches 

when current rates of recall fall below the long-run average. 

While our model does not have clear delineations between 

patches, because items fall into nested clusters with no 

characteristic scale, it may still account for patch evidence. 

Recent modeling work showed that random walks on 

semantic networks might account for this evidence without 

reference to patches (Abbott, Austerweil & Griffiths, 2012). 

Finally, it will be informat ive to apply the Wikipedia 

method of network creation to other phenomena of semantic 

memory, in other semantic domains. In doing so, it will be 

important to compare this method with a range of co-

occurrence methods, as well as other encyclopedic methods.  
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